# Orange binder

## Book two - Tubes

## CONTENTS

| tab 1  | General section                               |
|--------|-----------------------------------------------|
| tab 2  | Special quality, gasfilled, and display tubes |
| tab 3  | Television and monitor tubes                  |
| tab 4  | Cathode-ray tubes                             |
| tab 5  | Camera tubes                                  |
| tab 6  | Image intensifier tubes                       |
| tab 7  | Transmitting and r.f. heating tubes           |
| tab 8  | Microwave tubes                               |
| tab 9  | Photomultiplier and photo tubes               |
| tab 10 | Radiation detectors                           |
| tab 11 | Accessories                                   |
| tab 12 | Miscellaneous devices                         |



**General section** 

## ELECTRONIC TUBES

#### 1. GENERAL

When properly used and handled, electronic tubes do not constitute a risk to health or to the environment.

However, certain hazards may arise and it is important that the following recommendations are observed. Care should be taken to ensure that all personnel who may handle, use or dispose of these products are aware of the necessary safety precautions.

Individual product data sheets may indicate if any of the specific hazards given in sections 2 to 9 are likely to be present.

#### 1.1 Breakage

If a tube is broken or otherwise damaged, precautions must be taken against the following hazards which may arise:

- Broken glass or ceramics (see section 4). Protective clothing such as gloves should be worn.
- Contamination by toxic materials and vapours. In particular skin contact and inhalation should be avoided.

#### 1.2 Disposal

These products should be disposed of in accordance with relevant legislation; in the United Kingdom the Deposit of Poisonous Waste Act 1972 and the Control of Pollution Act 1974 apply. Most electronic tubes contain toxic materials, therefore, particularly when disposing of large quantities, the advice of the manufacturer's service department should be sought.

#### 1.3 Fire

Electronic tubes themselves do not present a fire hazard.

However, since most packaging materials are flammable, care should be taken in the disposal of such materials; some of which will emit toxic fumes if burned.

If packaged tubes are involved in a fire, implosion may occur (see section 7), together with the consequent release of toxic vapours and materials.

#### 2. X-RADIATION

All high voltage electronic tubes produce progressively more dangerous X-rays as the operating voltage is increased. The tube envelope usually provides limited protection; however, further shielding may be required in the equipment if the voltage exceeds 10 kV. Should such shielding be required to reduce the X-ray dose rate to below the permitted limit of 0.5 mR/h, this will be indicated on the individual data sheets.

Under some equipment fault conditions, the X-ray hazard may be considerably increased. This hazard may be present only when the tube is energized.

#### 3. RADIO FREQUENCY (R.F.) AND MICROWAVE RADIATION

Exposure to r.f. fields may be a hazard even at relatively low frequencies. Absorbtion of r.f. energy by the human body is dependent on frequency. Although at frequencies below 30 MHz most energy passes straight through the body with little heating effect it may still represent a hazard. At microwave frequencies a power density above 1 mW/sq cm may comprise a definite hazard, particularly to the eyes.



#### **RADIO FREQUENCY (R.F.) AND MICROWAVE RADIATION (Continued)** 3.

For this reason care should be exercised when using r.f. and microwave tubes. All r.f. connectors and cavities must be correctly fitted before operation so that no leakage of energy may occur and the r.f. energy must be coupled efficiently to the load. It is particularly dangerous to look into open wavequide, coaxial feeders or transmitter antennae while the tube is energized.

Power klystrons must not be operated without a suitable load at the output and at any intermediate cavities.

Screening of terminal insulators on some high power tubes may be necessary.

This hazard may be present only when the tube is energized.

#### 4. **BERYLLIUM OXIDE CERAMICS**

The insulators of some microwave power tubes are made of beryllium oxide. Beryllium oxide dust is toxic if inhaled or if particles enter a cut or an abrasion. Avoid handling beryllium oxide ceramics; if they are touched the hands must be thoroughly washed with soap and water. Do nothing to beryllium oxide ceramics which may produce dust or fumes.

All tubes containing beryllium oxide are marked as such. Care should be taken upon eventual disposal that they are not thrown out with general industrial waste. Devices requiring disposal may be handled by the manufacturer's service department. Users seeking disposal of tubes incorporating beryllium oxide ceramics should first take advice from the manufacturer's service department. This hazard is present at all times from receipt to disposal of tubes.

#### 5. CADMIUM COMPOUNDS

Cadmium compounds are toxic. In the event of accidental breakage, cadmium dust may be released. Gloves should be worn and the dust should be mopped up with a damp cloth. On disposal the cloth should be sealed in a plastic bag and the hands thoroughly washed with soap and water.

Controlled disposal of tubes containing cadmium compounds should be conducted in the open air or in a well ventilated area.

Inhalation of cadmium dust must be avoided.

This hazard is present, if breakage occurs, at all times from receipt to disposal of tubes.

#### 6. MERCURY

Mercury is a toxic substance, especially in the vapour phase. Should breakage occur, gloves should be worn and all droplets brushed up as soon as possible and placed in an airtight container for disposal. Afterwards the hands must be thoroughly washed with soap and water. Direct contact with the skin should be avoided.

This hazard is present, if breakage occurs, at all times from receipt to disposal of tubes.

#### IMPLOSION - HANDLING OF TELEVISION PICTURE AND CATHODE RAY TUBES 7.

All vacuum tubes store potential energy by virtue of their vacuum. The energy level is low in small tubes but represents a hazard in the larger sizes of tubes.

Some modern tubes are provided with integral implosion protection which conforms to IEC65, clause 18. With these tubes, no additional protection is needed. For those tubes without integral implosion protection, precautions taken during manufacture reduce the possibility of spontaneous implosion to a minimum. However, additional stresses due to mishandling may considerably increase the risk of implosion. Implosions may occur immediately or may be delayed.

The strength of the glass envelope will inevitably be impaired by surface damage, such as scratches or bruises (localized surface cracks caused by impact). When a tube is not in its equipment or original packing, it should be placed faceplate downwards on a pad of suitable ribbed material which is kept free from abrasive substances.

Under no circumstances should any attempt be made to move the bonded faceplate or integral implosion protection band when fitted to a tube.

March 1984

Mullard





Stresses on the neck of the tube must be avoided. Handle by the recommended methods illustrated for those tubes which have relatively small necks with large envelopes.



Fig.1 - Lifting tube from edge-down position.



Fig.2 - Lifting tube from face-down position.



Fig.3 - Lifting tube from face-up position.



Mullard

March 1984

#### Tube on one edge

To lift a tube from the edge-down position, one hand should be placed around the parabolic section of the cone and the other hand should be placed near (slightly below) the centre of the faceplate as shown in Fig.1 UNDER NO CIRCUMSTANCES SHOULD ANY FORCE BE APPLIED TO THE NECK OF THE TUBE.

#### **Tube face-down**

To lift a tube from the face-down position, the hands should be placed under the areas of faceplate close to the fixing lugs (if fitted), at diagonally opposite corners of the faceplate as shown in Fig.2. The tube must not be lifted from this position by the lugs themselves. UNDER NO CIRCUMSTANCES SHOULD ANY FORCE BE APPLIED TO THE NECK OF THE TUBE.

#### Tube face-up

To lift a tube from the face-up position, the hands should be placed under the areas of the cone close to the fixing lugs (if fitted), at diagonally opposite corners of the cone as shown in Fig.3. The tube must not be lifted from this position by the lugs themselves. UNDER NO CIRCUMSTANCES SHOULD ANY FORCE BE APPLIED TO THE NECK OF THE TUBE.

If the handling procedures for tubes prior to insertion in the equipment are such that there is a risk of personal injury as a consequence of severe accidental damage to the tube, then it is recommended that protective clothing should be worn, particularly eye shielding.

When fitted, lugs are primarily provided for fixing in equipment and must not be subjected to excessive forces while the tube is being handled. Adequate protection must be provided if there is a possibility of the tube falling as a result of failure of a lug or lugs.

#### 8 HIGH VOLTAGE - TELEVISION PICTURE AND CATHODE RAY TUBES

Attention is called to the fact that a high voltage may be carried by the internal coductive coating which is connected to the final anode connector and also by the external coating if not earthed, even after a tube has been removed from equipment. Anyone handling such a tube may receive an electric shock which, while generally not dangerous to the person, might cause an involuntary reaction resulting in damage to the tube which might, for example, be dropped. When it is required to discharge the tube capacitance, connection should be made via a resistor of not less than 10 k $\Omega$  which is capable of withstanding high voltages.

In equipment where the chassis can be connected directly to the mains, there is a risk of electric shock if access can be gained to the metal rimband through the aperture at the front of the equipment. In order to reduce the magnitude of the shock it is recommended that a 2 M $\Omega$  resistor, capable of withstanding peak voltages of e.h.t. values (as specified in IEC65, clause 14.1) is inserted between rimband and the braided earth contact to the external coating. This safety arrangement will provide substantial separation from the mains.

An appreciable capacitance is formed between the rimband and the internal conductive layer of the tube. In the event of flashover, high voltages of low energy will be induced on the rimband. In order to bypass these voltages, an extra-high-voltage low-inductance capacitor of a few nanofarads (in compliance with IEC65, clause 14.2) should be inserted between the rimband and the braided earth contact to the external coating.

#### 9 STRONG MAGNETIC FIELDS

Some electronic tubes use permanent magnets in their operation. When handling or mounting such tubes, a distance of at least 5 cm should be maintained between the magnet and any piece of magnetic material to avoid mechanical shock to the magnet or to the glass or ceramic seals. For this reason it is recommended that non-magnetic tools are used during installation, such as non-magnetic stainless steel, brass, beryllium copper and aluminium. Furthermore, the user should be aware of the detrimental influence of the strong magnetic field around the magnet on compass, electrical meters, watches and

Mullard

March 1984

## GENERAL SAFETY RECOMMENDATIONS

#### other precision instruments.

Packaged tubes must be stored in such a way as to prevent a decrease of the field strength of the magnets due to interaction with adjacent magnets. Unless otherwise stated on the data sheet, a minimum distance of 15 cm should be maintained between the tubes.

The best protection for the tube is its original packing because this ensures an adequate spacing between the tubes and ferrous objects, and moreover protects the tube against reasonable vibration and shock. Despite this controlled spacing, magnetically-sensitive instruments such as compasses, electrical meters, watches and other precision instruments should not be brought close to a bank of packaged tubes.

UNPACKED PERMANENT MAGNET TUBES SHOULD NEVER BE PLACED ON STEEL BENCHES OR SHELVES.

SAFETY RECOMMENDATIONS SUMMARY

| HAZARD:                                     | X-radia. | (R.F.) and mency | Padiation<br>Beryllium<br>Oxide control | Cadmium con- | Mercury | Implosion | High volv. | Strong magnas: | uelds ~~uc |
|---------------------------------------------|----------|------------------|-----------------------------------------|--------------|---------|-----------|------------|----------------|------------|
| TELEVISION PICTURE AND<br>CATHODE RAY TUBES | x        |                  |                                         | x            |         | x         | x          |                |            |
| RECTIFIERS                                  |          |                  |                                         |              | x       |           |            |                |            |
| THYRATRONS                                  |          |                  |                                         |              | x       |           |            |                |            |
| TRANSMITTING TUBES                          | x        | x                |                                         |              |         |           |            |                |            |
| HIGH POWER KLYSTRONS                        | х        | x                | х                                       |              |         |           |            |                |            |
| MAGNETRONS                                  |          | x                |                                         |              |         |           |            | х              |            |
| TRAVELLING WAVE TUBES                       |          | x                |                                         |              |         |           |            | x              |            |
| IGNITRONS                                   |          |                  |                                         |              | x       |           |            |                |            |
| REFER TO:                                   | 2 4000   | Serion 3         | Server Server                           | Security 5   | So.     | Same 7    | Secric.    | 6 400          |            |

Safety recommendations under the heading GENERAL (section 1) refer to all electronic tubes.

Mullard



March 1984







Special quality, gasfilled, and display tubes

**Television and monitor tubes** 

3

## BASES

Dimensions in mm

SMALL-BUTTON NEO EIGHTAR BASE IEC 67-1-31 JEDEC B7-208





#### Notes

- 1. Base-pin positions are held to tolerances such that the base will fit a flat-plate gauge having a thickness of 9,53 and eight equally spaced holes of  $1,40 \pm 0,01$  diameter located on a  $15,24 \pm 0,01$ diameter circle. The gauge is also provided with a centre hole to provide 0,25 diametric clearance for the lug and key. Pin fit in the gauge shall be such that the entire length of pins will, without undue force, pass into and disengage from the gauge.
- 2. This dimension may vary within the limits shown around the periphery of any individual pin.



#### 7-PIN MINIATURE BASE WITH PUMPING STEM

Dimensions in mm









Notes

- 1. Base-pin and pumping stem positions are held to tolerances such that entire length of pins and stem will without undue force pass into and disengage from a flat-plate gauge having a thickness of 6,35 mm and eight holes with diameters of 1,27  $\pm$  0,013 mm so located on a 9,525  $\pm$  0,013 mm diameter circle that the distance along the chord between any two adjacent hole centres is 3,645  $\pm$  0,013 mm and a centre hole of 5,97  $\pm$  0,025 mm being chamfered at the top over 1,52 mm with an angle of 45 degrees.
- 2. This dimension around the periphery of any individual pin may vary within the limits shown.

Mullard

#### 12-PIN BASE IEC-67-I-47a, type 2

Dimensions in mm



Fig. 3.

12-pin Base JEDEC B12-262









Fig. 4.

4 of 4 January 1983

Mullard

M82-2184/RC

5

# GENERAL OPERATIONAL RECOMMENDATIONS

#### INTRODUCTION

Equipment design should be based on the characteristics as stated in the data sheets. Where deviations from these general recommendations are permissible or necessary, statements to that effect will be made.

If applications are considered which are not referred to in the data sheets of the relevant tube type extra care should be taken with circuit design to prevent the tube being overloaded due to unfavourable operating conditions.

## SPREAD IN TUBE CHARACTERISTICS

The spread in tube characteristics is the difference between maximum and minimum values. Values not qualified as maximum or minimum are nominal ones. It is evident that average or nominal values, as well as spread figures, may differ according to the number of tubes of a certain type that are being checked. No guarantee is given for values of characteristics in settings substantially differing from those specified in the data sheets.

## SPREAD AND VARIATION IN OPERATING CONDITIONS

The operating conditions of a tube are subject to spread and/or variation.

**Spread** in an operating condition is a **permanent** deviation from an average condition due to, e.g., component value deviations. The average condition is found from such a number individual cases taken at random that an increase of the number will have a negligible influence.

Variation in an operating condition is **non-permanent** (occurs as a function of time), e.g., due to supply voltage fluctuations. The average value is calculated over a period such that a prolongation of that period will have negligible influence.

#### LIMITING VALUES

Limiting values are in accordance with the applicable rating system as defined by IEC publication 134. Reference may be made to one of the following 3 rating systems.

Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions. These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental conditions, and spread or variations in characteristics of the device under considerations and of all other electronic devices in the equipment.

**Design-maximum rating system.** Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device\* of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

5



These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and thoughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

**Design-centre rating system.** Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device\* of a specified type as defined by its published data, and should not be exceeded under average conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device\* in equipment operating at the stated normal supply voltage.

If the tube data specify limiting values according to more than one rating system the circuit has to be designed so that none of these limiting values is exceeded under the relevant conditions.

In addition to the limiting values given in the individual data sheets the directives in the following paragraphs should be observed.

#### HEATER SUPPLY

For maximum cathode life it is recommended that the heater supply be stabilized at the nominal heater voltage. Any deviation from this heater voltage has a detrimental effect on tube performance and life, and should therefore be kept to a minimum. Such deviations may be caused by:

- mains voltage fluctuations;
- spread in the characteristics of components such as transformers, resistors, capacitors, etc.;
- spread in circuit adjustments;
- operational variations.

#### Supply from mains transformer

The maximum deviation of the heater voltage must not exceed  $\pm$  15% (Design Maximum Value). A mains transformer will generally fulfil this condition at mains voltage fluctuations not exceeding  $\pm$  10%.

#### Supply from line output transformer

A deviation from the nominal heater voltage due to spread in component characteristics and adjustments should not exceed  $\pm$  7,5%. Considering all other possible deviations, due to mains voltage variations, beam current variations, VCR-operation, etc., the total spread in heater voltage must not exceed  $\pm$  15%.

\* A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Mullard

U

#### Standby (instant-on circuits)

The majority of tubes employ quick-heating cathodes and therefore an instant-on circuit is superfluous. If used, it is recommended to that the heater voltage of the tubes be reduced during standby operation to 75% of the nominal value.

Notes: If series connection of the heater circuit has to be used, and only parallel connection is quoted in the data sheet, please contact your local supplier.

Picture tubes with quick-heating cathodes should not be used in series with receiving tubes.

#### CATHODE TO HEATER VOLTAGE

The voltage between cathode and heater should be as low as possible and never exceed the limiting values given in the data sheets of the individual tubes. The limiting values relate to that side of the heater where the voltage between cathode and heater is greatest. The voltage between cathode and heater may be d.c., a.c., or a combination of both. Unless otherwise stated, the maximum values quoted indicate the maximum permissible d.c. voltage. If a combination of d.c. and a.c. voltages is applied, the peak value may be twice the rated  $V_{kf}$ ; however, unless otherwise stated, this peak value shall never exceed 315 V. Unless otherwise stated, the  $V_{kf}$  max. holds for both polarities of the voltage; however, a positive cathode is usually the most favourable in view of insulation during life.

In order to avoid excessive hum the a.c. component of the heater to cathode voltage should be as low as possible and never exceed 20 V r.m.s. (mains frequency). A d.c. connection should always be present between heater and cathode. Unless otherwise specified the maximum resistance should not exceed 1 M $\Omega$ ; the maximum impedance at mains frequency should be less than 100 k $\Omega$ .

#### INTERMEDIATE ELECTRODES (between cathode and final accelerator)

In no circumstances should the tube be operated without a d.c. connection between each electrode and the cathode. The total effective impedance between each electrode and the cathode should never exceed the published maximum value. However, no electrode should be connected directly to a high energy source. When such a connection is required, it should be made via a series resistor of not less then  $1 \text{ k}\Omega$ .

#### CUT-OFF VOLTAGE

Curves showing the limits of the cut-off voltage as a function of grid 2 voltage are generally included in the data. The brightness control should be so dimensioned that it can handle any tube within the limits shown, at the appropriate grid 2 voltage.

The published limits are determined at an ambient illumination level of 10 lux. Because the brightness of a spot is in general greater than that of a raster of the same current, the cut-off voltage determined with the aid of a focused spot will be more negative by about 5 V as compared with that of a focused raster.

#### FOCUSING ELECTRODE VOLTAGE

Individual tubes will have satisfactory focus over the entire screen at some value within the published range of the focusing voltage.

Due to their flat focus characteristics, black and white picture tubes can generally be operated at a fixed focusing voltage within the published range. Colour picture tubes and monitor tubes for data display should have adjustable focus.

#### LUMINESCENT SCREEN

To prevent permanent screen damage, care should be taken:

- not to operate the tube with a stationary picture at high beam currents for extended periods;
- not to operate the tube with a stationary or slowly moving spot except at extremely low beam currents;
- if no e.h.t. bleeder is used, to choose the time constants of the cathode, grid 1, grid 2, and deflection circuits, such that sufficient beam current is maintained to discharge the e.h.t. capacitance before deflection has ceased after equipment has been switched off.

#### EXTERNAL CONDUCTIVE COATING

The external conductive coating must be connected to the chassis. The capacitance of this coating to the final accelerating electrode may be used to provide smoothing for the e.h.t. supply.

The coating is not a perfect conductor and in order to reduce electromagnetic radiation caused by the line time base and the picture content it may be necessary to make multiple connections to the coating. See also 'Flashover'.

#### METAL RIMBAND

An appreciable capacitance exists between the metal rimband and the internal conductive coating of the tube; its value is quoted in the individual data sheets. To avoid electric shock, a d.c. connection should be provided between the metal band and the external conductive coating. In receivers where the chassis can be connected directly to the mains there is a risk of electric shock if access is made to the metal band. To reduce the shock to the safe limit, it is suggested that a 2 M $\Omega$  resistor capable of handling the peak voltages be inserted between the metal band and the point of contact with the external conductive coating. This safety arrangement will provide the necessary insulation from the mains but in the event of flashover high voltages will be induced on the metal band. It is therefore recommended that the 2 M $\Omega$  resistor be bypassed by a 4,7 nF capacitor capable of withstanding the peak voltage divider formed by this capacitor and the capacitance of the metal rimband to the internal conductive coating, and the anode voltage. The 4,7 nF capacitor also serves to improve e.h.t. smoothing by adding the rimband capacitance to the capacitance of the outer conductive coating.

#### FLASHOVER

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm. Although the utmost precautions are taken in the design and manufacture of the tubes, there is always a chance that flashover will occur. The resulting transient currents and voltages may be of sufficient magnitude to cause damage to the tube itself and to various components on the chassis. Arcing terminates when the e.h.t. capacitor is discharged. Therefore it is of vital importance to provide protective circuits with spark gaps and series resistors, which should be connected according to Fig. 1. No other connections between the outer conductive coating and the chassis are permissible.

In picture tubes which are manufactured in Soft-Flash technology, the peak discharge currents are limited to approx. 60 A, offering higher set reliability, optimum circuit protection and component savings (see also Technical Note 039). However this limited value of 60 A is still too high for the circuitry which is directly connected to the tube socket. Therefore Soft-Flash picture tubes should also be provided with spark gaps.

# Mullard

#### General operational recommendations

## TV PICTURE TUBES AND MONITOR TUBES





## IMPLOSION PROTECTION

All picture tubes employ integral implosion protection and must be replaced with a tube of the same type number or recommended replacement to assure continued safety.

#### HANDLING

Although all picture tubes are provided with integral implosion protection, which meets the intrinsic safety requirements stipulated in the relevant part of IEC 65, care should be taken not to scratch or knock any part of the tube. Stress on the tube neck must be avoided.

When lifting a tube from the edge-down position, one hand should be placed around the parabola section of the cone and the other hand should be placed under the rim band (Fig. 2).



Fig. 2 Lifting picture tube from edge-down position.

When placing a tube face downwards ensure that the screen rests on a soft pad of suitable material, kept free from abrasive substances. When lifting from the face-down position the hand should be placed under the areas of the faceplate close to the mounting lugs at diagonally opposite corners of the faceplate (Fig. 3).

When lifting from the face-up position the hands should be placed under the areas of the cone close to the mounting lugs at diagonally opposite corners of the cone (Fig. 4).





Fig. 4 Lifting tube from face-up position.

In all handling procedures prior to insertion in the receiver cabinet there is a risk of personal injury as a result of severe accidental damage to the tube. It is therefore recommended that protective clothing should be worn, particularly eye shielding.

If suspending the tube from the mounting lugs ensure that a minimum of 2 are used; UNDER NO CIRCUMSTANCES HANG THE TUBE FROM ONE LUG.

The slots in the rimband of colour picture tubes are used in the mounting of the degaussing coils. It is not recommended to suspend the tube from one or more of these slots as permanent deformation to the rimband can occur.

Remember when replacing or servicing the picture tube that a residual electrical charge may be carried by the anode contact and also the external coating if not earthed. Before removing the tube from the requipment, earth the external coating and short the anode contact to the coating.

#### PACKING

The packing provides protection against tube damage under normal conditions of shipment or handling. Observe any instructions given on the packing and handle accordingly. The tube should under no circumstances be subjected to accelerations greater than 35 g.

#### MOUNTING

Unless otherwise specified on the data sheets for individual tubes there are no restrictions on the position of mounting.

The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The mass of the socket and additional circuitry should not be more than 150 g. The socket of tubes with a 7-pin miniature base may not be used for mounting components.

It is very desirable that tubes should not be exposed to strong electrostatic and magnetic fields.

#### DIMENSIONS

In designing the equipment the tolerances given on the dimensional drawings should be considered. Under no circumstances should the equipment be designed around dimensions taken from individual tubes.

### REFERENCE LINE

Where a reference line is indicated on the tube outline drawing, it is determined by means of a gauge. Drawings of the gauges are given in this section under "Reference line gauges"

Mullard

M82-2183/RC







## REFERENCE LINE GAUGES

#### REFERENCE LINE GAUGE C (JEDEC 126) (IEC67-IV-3)



Fig. 1 Reference line gauge for 110<sup>o</sup> deflection angle.

The millimetre dimensions are derived from the original inch dimensions.

|      |       | inches |       |         | millimetres |         |       |
|------|-------|--------|-------|---------|-------------|---------|-------|
| ref. | min.  | nom.   | max.  | min.    | nom.        | max.    | notes |
| A    | -     | 5,000  | _     | _       | 127,00      | _       | _     |
| В    | -     | 4,500  | -     |         | 114,30      | _       | _     |
| С    | _     | 2,000  |       | -       | 50,80       | _       | _     |
| D    | 1,168 | 1,168  | 1,171 | 29,668  | 29,668      | 29,743  | -     |
| E    | 1,241 | 1,242  | 1,243 | 31,522  | 31,547      | 31,572  | -     |
| F    | 4,248 | 4,250  | 4,252 | 107,900 | 107,950     | 108,000 | _     |
| G    |       | 0,279  | -     | -       | 7,09        | -       | 2 .   |
| н    |       | 0,250  |       | -       | 6,35        | -       |       |
| L    | 1,165 | 1,170  | 1,175 | 29,60   | 29,72       | 29,84   | 2     |
| M    | -     | 1,634  | -     |         | 41,50       |         | -     |
| N    |       | 0,920  | -     |         | 23,37       | -       | 1     |
| P    |       | 0,250  | -     | -       | 6,35        | -       | -     |
| R    | _     | 1,000r |       | -       | 25,40r      | _       | -     |
| S    | 0,712 | 0,714  | 0,716 | 18,085  | 18,136      | 18,186  | -     |
| T    | -     | 3,214  | -     | -       | 81,64       | -       | -     |
| V    | 2,490 | 2,500  | 2,510 | 63,25   | 63,50       | 63,75   | -     |

#### Notes

1.  $y = 0.58 x^2 + 0.576$  inches (0,0228  $x^2 + 14,630$  mm) 'y' values must be held to  $\pm 0,002''$  (0,05 mm). The Y-axis is 0,920'' (23,368 mm) below the X-X' reference plane.

2. 40 ± 30' taper between planes G and L.

#### REFERENCE LINE GAUGE D

Dimensions in mm



Fig. 2 Reference line gauge for 90<sup>o</sup> deflection angle.

### **REFERENCE LINE GAUGE G** (JEDEC G148)

Dimensions in mm



Fig. 3 Reference line gauge for 110<sup>o</sup> deflection angle.

Mullard

Reference line gauges

## TV PICTURE TUBES AND MONITOR TUBES





# Mullard



## SCREEN PHOSPHORS



orange binder, tab 3

Fig. 1 Kelly chart.

Note: For screen phosphors for colour picture tubes, see the relevant data sheets.

Survey of screen phosphors

| ch ho | JEDEC       | TIUORESCENT   | pnospnorescent | hai sistering |        | ICIALIVE | evel of lum | Inance             |
|-------|-------------|---------------|----------------|---------------|--------|----------|-------------|--------------------|
|       | designation | colour        | colour         |               | 10%    | 1%       | 0,1%        |                    |
| N     | P4          | white         | I              | I             | 1,3 ms | 23 ms    | 210 ms      | (yellow component) |
|       |             |               |                |               | 1,3 ms | 20 ms    | 180 ms      | (blue component)   |
| GH    | P31         | green         | green          | medium short  | 600 µs | 8 ms     | 90 ms       |                    |
| GR    | P39         | green         | green          | long          | 100 ms | 1,4 s    | 9 s         |                    |
| KC    | I           | yellow-green  | yellow-green   | medium short  | 1,3 ms | 23 ms    | 210 ms      |                    |
| ×     | 1           | colour screen | 1              | 1             | 1      | I        | 1           |                    |

| The values in the table are mea | asured under the following operation co |
|---------------------------------|-----------------------------------------|
| Final accelerator voltage       | 10 to 18 kV                             |
| Screen current                  | 0,1 μA/cm <sup>2</sup>                  |
| Focusing                        | defocused                               |
| Excitation                      | sufficient for complete build-up        |

Mullard

## TV PICTURE TUBES AND MONITOR TUBES

2 of 3

January 1983



Mullard

TV PICTURE TUBES AND MONITOR TUBES

M82-2186/RC



# LIST OF SYMBOLS

Symbols denoting electrodes/elements and electrode/element connections

- f Heater
- k Cathode
- Grid: Grids are distinguished by means of an additional numeral; g
- the electrode nearest to the cathode having the lowest number. а
- Anode
- m External conductive coating
- $m^1$ Rim band 0
- Fluorescent screen
- Tube pin which must not be connected externally i.c.
- Tube pin which may be connected externally n.c.

## Symbols denoting voltages

Unless otherwise stated, the reference point for electrode voltages is the cathode.

- V Symbol for voltage, followed by a subscript denoting the relevant electrode/element
- Vf Heater voltage
- Vpp Peak-to-peak value of a voltage
- Vp Peak value of a voltage
- VGR Grid 1 voltage for visual extinction of focused raster (grid drive service)
- VKR Cathode voltage for visual extinction of focused raster (cathode drive service)

## Symbols denoting currents

- Symbol for current followed by a subscript denoting the relevant electrode |f Heater current (r.m.s. value)

Note: The symbols quoted represent the average value of the current, unless otherwise stated.

#### Symbols denoting powers

- Dissipation of the fluorescent screen Po
- Pa Grid dissipation

## Symbols denoting capacitances

See IEC publication 100

## Symbols denoting resistances and impedances

- R Symbol for resistance followed by a subscript for the relevant electrode pair. When only one subscript is given the second electrode is the cathode.
- Ζ Symbol for impedance followed by a subscript for the relevant electrode pair. When only one subscript is given the second electrode is the cathode.

Mullard

## Symbols denoting various quantities

- L Luminance
- f Frequency
- н Magnetic field strength

January 1983 1 of 1

Distant.

January 1983

1 of 1

## TYPE DESIGNATION

#### PRO ELECTRON TYPE DESIGNATION CODE

The type number of the picture tubes consists of: Single letter, group of figures, hyphen, group of figures, letter or letter group.

The first letter indicates the prime application of the tube:

A - Television display tube for domestic application.

M - Monitor tube for video and data display.

First group of figures: diameter or diagonal of the face in cm.

Second group of figures: design number.

Final letter or letter group: properties of the phosphor screen.

The first letter denotes the colour of the fluorescence; the second letter, if any, denotes other specific differences in screen properties.

W - White screen for television and data display tubes.

X - Three-colour screen for television display tubes.

GH - Green screen for video and data display tubes (medium-short persistence).

GR - Green screen for video and data display tubes (long persistence).

#### Example



Mullard

5

M82-2182/RC


## DEFLECTION UNIT

#### Raster Correction Free

#### QUICK REFERENCE DATA

| in line         |
|-----------------|
| 42 cm (16 in)   |
| 29,1 mm         |
| 90 <sup>o</sup> |
| 3,04 А р-р      |
| 1,89 mH         |
| 0,45 A(p-p)     |
| 55,6 Ω          |
|                 |

# orange binder, tab 3

#### APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tubes A42-590X and A42-591X, with a neck diameter of 29,1 mm. The unit requires no raster correction circuitry.

#### DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

5

## AT1470/25

#### MECHANICAL DATA

#### Outlines

The deflection unit fits a tube with a neck diameter of 29,1  $^{+0,9}_{-0,7}$  mm.

For correct fitting the tube neck should be provided with adhesive tape.





Dimensions in mm



Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

#### ENVIRONMENTAL TEST SPECIFICATIONS

Vibration Bump Cold Dry heat Damp heat, steady state Cyclic damp heat Change of temperature + 90 °C -20 to + 90 °C according to UL 1413, category 94-V1 1,4 Nm

IEC 68-2-6 (test Fc) IEC 68-2-29 (test Eb; 35g) IEC 68-2-1 (test Ab) IEC 68-2-2 (test Bb) IEC 68-2-3 (test Ca) IEC 68-2-30 (test Db) IEC 68-2-14 (test Nb)

# Mullard

じ

#### ELECTRICAL DATA

#### Line coils

Inductance at 1 V (r.m.s.), 1 kHz Resistance at 25 °C Line deflection current, edge to edge, at 25 kV Voltage during line scan, edge to edge, at 25 kV, scan period 52,5  $\mu$ s

Field coils

Inductance at 1 V (r.m.s.), 1 kHz Resistance at 25  $^{\rm o}{\rm C}$  Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp between field coil and core clamp parallel connected 1,89 mH ± 5% 2,6 Ω ± 10% 3,04 A (p-p)

109 V

series connected 116 mH  $\pm$  10% 55,6  $\Omega \pm$  7% 0,45 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 MΩ > 500 MΩ > 10 MΩ



Fig. 2 Connection diagram, L = Line, F = Field.

#### ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
  magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.



11

• A set of the set

traslie M

10.00

# DEFLECTION UNIT

Raster Correction Free

#### QUICK REFERENCE DATA

| Picture tube                                    |                                     |
|-------------------------------------------------|-------------------------------------|
| gun arrangement<br>diagonal<br>neck diameter    | in line<br>51 cm (20 in)<br>29,1 mm |
| Deflection angle                                | 90o                                 |
| Line deflection current, edge to edge at 25 kV  | 3,1 А р-р                           |
| Inductance of line coils, parallel connected    | 1,9 mH                              |
| Field deflection current, edge to edge at 25 kV | 0,86 A p-p                          |
| Resistance of field coils, parallel connected   | 13,6 Ω                              |

#### APPLICATION

This deflection unit, in conjunction which devices for colour purity and static convergence is for 90° in-line colour picture tube A51-590X, with a neck diameter of 29,1 mm. The unit requires no raster correction circuitry.

#### DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

AT1480/20

#### MECHANICAL DATA

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 + 0.9 - 0.7 mm.

For correct fitting the tube neck should be provided with adhesive tape.





Dimensions in mm



Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

#### ENVIRONMENTAL TEST SPECIFICATIONS

Vibration Bump Cold Dry heat Damp heat, steady state Cyclic damp heat Change of temperature + 90 °C -20 to + 90 °C according to UL 1413, category 94-V1 1,4 Nm

IEC 68-2-6 (test Fc) IEC 68-2-29 (test Eb; 35g) IEC 68-2-1 (test Ab) IEC 68-2-2 (test Ab) IEC 68-2-3 (test Ca) IEC 68-2-30 (test Db) IEC 68-2-14 (test Nb)

2

# Mullard

AT1480/20

#### ELECTRICAL DATA

Line coils Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25  $^{\rm O}{\rm C}$  Line deflection current, edge to edge, at 25 kV

Field coils Inductance at 1 V (r.m.s.), 1 kHz Resistance at 25 °C Field deflection current, edge to edge, at 25 kV

Cross-talk

0

Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp between field coil and core clamp 1,9 mH ± 5% 2,2 Ω ± 10% 3,1 A(p-p)

29 mH ± 10% 13,6 Ω ± 7% 0,86 A(p-p)

a voltage of 10 V, 15 625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 MΩ > 500 MΩ > 10 MΩ



Fig. 2 Connection diagram, L = Line, F = Field.

#### ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.





#### DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

# HIGH RESOLUTION CRT FOR DATA DISPLAY

- 90<sup>0</sup> deflection angle
- 31 cm (12 in) face diagonal; rectangular glass
- 28,6 mm neck diameter
- white, green or yellow-green screen phosphor
- integral implosion protection

#### QUICK REFERENCE DATA

| Deflection angle      | 900                                                          |
|-----------------------|--------------------------------------------------------------|
| Face diagonal         | 31 cm (12 in)                                                |
| Overall length        | max. 295 mm                                                  |
| Neck diameter         | 28,6 mm                                                      |
| Heating               | 6,3 V/240 mA                                                 |
| Quick heating cathode | with a typical tube a legible picture will appear within 5 s |
| Grid 2 voltage        | 400 V                                                        |
| Anode voltage         | 17 kV                                                        |
| Resolution            | approx. 1300 lines                                           |
|                       |                                                              |

#### APPLICATION

This high resolution CRT is for alphanumeric and graphic display applications, such as computer terminals, word processors, etc.

The CRTs can be supplied with white (W), green (GH and GR) or yellow-green (KC) phosphors.

#### ELECTRICAL DATA

| Focusing method                                                                                         | electrostatic                                                                 |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Deflection method                                                                                       | magnetic                                                                      |
| Deflection angles<br>diagonal<br>horizontal<br>vertical                                                 | approx. 90 <sup>0</sup><br>approx. 82 <sup>0</sup><br>approx. 67 <sup>0</sup> |
| Direct interelectrode capacitances<br>cathode to all other electrodes<br>grid 1 to all other electrodes | approx. 3 pF<br>approx. 7 pF                                                  |
| Capacitance of external conductive coating to anode                                                     | max. 1050 pF<br>min. 600 pF                                                   |
| Heater voltage                                                                                          | 6,3 V                                                                         |
| Heater current at 6,3 V                                                                                 | 240 m A                                                                       |
| OPTICAL DATA                                                                                            |                                                                               |

W (P4\*), GH (P31\*), GR (P39\*) and KC approx. 50%

Light transmission at centre of screen

#### RASTER CENTRING

Phosphor type

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

\* According to EIA.

July 1981

# Mullard

MECHANICAL DATA (see also the figures under Dimensional Data)

| Overall length                                                                           | max. 295 mm                                       |
|------------------------------------------------------------------------------------------|---------------------------------------------------|
| Greatest dimensions of tube<br>diagonal<br>width                                         | 321 mm<br>282 mm                                  |
| height                                                                                   | 222 mm                                            |
| Minimum useful screen dimensions<br>diagonal<br>horizontal axis<br>vertical axis<br>area | 295 mm<br>257 mm<br>195 mm<br>501 cm <sup>2</sup> |
| Implosion protection                                                                     | rim band                                          |
| lulb                                                                                     | J99-Z1                                            |
| Bulb contact designation                                                                 | J99-Z1a-j121                                      |
| Base designation                                                                         | IEC 67-I-31a; EIA B7-208                          |
| Basing                                                                                   | 8HR                                               |
| Flashover protection                                                                     | ring trap base                                    |
| Mass                                                                                     | approx. 3,2 kg                                    |
| RATINGS (Absolute Maximum System)                                                        |                                                   |
| Unless otherwise specified voltage values are positive and                               | d measured with respect to grid 1.                |
| Anode voltage                                                                            | max. 19 kV<br>min. 13 kV                          |
| Grid 4 (focusing electrode) voltage                                                      | -500 to +1000 V                                   |
| Grid 2 voltage                                                                           | max. 700 V                                        |
| Anode current<br>long-term average value<br>peak value                                   | max. 75 μA<br>max. 300 μA                         |
| Cathode voltage, positive peak value                                                     | max. 400 V                                        |
| Heater voltage                                                                           | 6,3 V ± 10% *                                     |
| Cathode-to-heater voltage                                                                | max. 100 V                                        |

DEVELOPMENT SAMPLE DATA

\* For maximum cathode life it is recommended that the heater supply be stabilized at 6,3 V.



#### CIRCUIT DESIGN VALUES

|                                                          |          | e., |    |  |
|----------------------------------------------------------|----------|-----|----|--|
| positive                                                 | max.     | 25  | μA |  |
| negative                                                 | max.     | 25  | μA |  |
| Grid 2 current                                           |          |     |    |  |
| positive                                                 | max.     | 5   | μA |  |
| negative                                                 | max.     | 5   | μA |  |
| MAXIMUM CIRCUIT VALUES                                   |          |     |    |  |
| Resistance between cathode and heater                    | max.     | 1,0 | MΩ |  |
| Impedance between cathode and heater                     | max.     | 0,1 | MΩ |  |
| Grid 1 circuit resistance                                | max.     | 1,5 | MΩ |  |
| Grid 1 circuit impedance                                 | max.     | 0,5 | MΩ |  |
| TYPICAL OPERATING CONDITIONS                             |          |     |    |  |
| Cathode drive; voltages specified with respect to grid 1 |          |     |    |  |
| Anode voltage                                            | 17 kV    |     |    |  |
| Grid 4 (focusing electrode) voltage                      | 0 to 400 | V*  |    |  |
| Grid 2 voltage                                           | 400 V    |     |    |  |
| Cathode cut-off voltage                                  | 40 to 70 | V** |    |  |
| Grid drive; voltages specified with respect to cathode   |          |     |    |  |
| Anode voltage                                            | 17 kV    |     |    |  |
| Grid 4 (focusing electrode) voltage                      | 0 to 400 | V*  |    |  |
| Grid 2 voltage                                           | 400 V    |     |    |  |
| Grid 1 cut-off voltage                                   | 45 to 83 | V** |    |  |
|                                                          |          |     |    |  |

#### RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre, with shrinking raster method, at light output =  $68.5 \text{ cd/m}^2$  (20 foot lambert), grid 2 voltage = 700 V, anode voltage = 17 kV; raster dimensions 216 mm x 162 mm.

#### **X-RADIATION CHARACTERISTIC**

X-radiation emitted will not exceed 0.5 mR/h throughout the useful life of the tube, when operated within the given ratings. See also graphs on the next page.

\* Measured at screen centre on spot at anode current =  $50 \ \mu A$  (peak), anode voltage =  $17 \ kV$ , grid 2 voltage =  $400 \ V$ . For optimum overall sharpness dynamic focusing is recommended (typ.  $250 \ V$ ).

\*\* Visual extinction of focused raster.

July 1981





X-radiation limit curve according to JEDEC94, at a constant anode current of 250  $\mu$ A, measured according to JEDEC64D.



0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to JEDEC64D.



Anode current as a function of cathode voltage. Cathode drive;  $V_{a,g3,g5} = 17 \text{ kV}$ .

Mullard

July 1981



Anode current as a function of grid 1 voltage. Grid drive;  $V_{a,g3,g5} = 17 \text{ kV}$ .

Mullard

July 1981

## M31-250

7283218.1

DEVELOPMENT SAMPLE DATA

7283220 150 VKR (V) 100 Joget linit, + nominal value lowerlimit 50 0 200 600 0 400 800  $V_{g2}(V)$ 

Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive;  $V_{a,g3,g5} = 17 \text{ kV}$ .

$$\frac{\Delta V_{\rm KR}}{\Delta V_{\rm a,g3,g5}} = 0,15 \times 10^{-3} \, .$$

Mullard

8

July 1981



Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive;  $V_{a,g3,g5}$  = 17 kV.

 $\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0,15 \times 10^{-3} \,. \label{eq:VGR}$ 

DIMENSIONAL DATA

Dimensions in mm



High resolution CRT for data display

M31-250



0

Mullard

July 1981











July 1981

# Mullard



9 10

20

#### Maximum cone contour



| Section | Nom.<br>distance  |                |                 | Dist            | ance fro        | om centr | re (max.        | values)         |                 |                 | a               |       |
|---------|-------------------|----------------|-----------------|-----------------|-----------------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|
| Section | reference<br>line | 0 <sup>0</sup> | 10 <sup>0</sup> | 20 <sup>0</sup> | 30 <sup>0</sup> | diag.    | 40 <sup>0</sup> | 50 <sup>0</sup> | 60 <sup>0</sup> | 70 <sup>0</sup> | 80 <sup>0</sup> | 900   |
| 1       | 110               | 137,1          | 138,5           | 142,9           | 150,5           | 154,0    | 151,0           | 133,0           | 120,5           | 112,6           | 108,2           | 106,8 |
| 2       | 100               | 134,2          | 135,3           | 138,6           | 144,2           | 147,0    | 144,4           | 128,3           | 116,9           | 109,6           | 105,5           | 104,2 |
| 3       | 90                | 128,8          | 129,4           | 131,2           | 134,1           | 135,6    | 134,2           | 122,5           | 112,5           | 106,0           | 102,4           | 101,2 |
| 4       | 80                | 121,9          | 122,0           | 122,3           | 122,9           | 122,6    | 121,1           | 113,6           | 106,5           | 101,6           | 98,8            | 97,9  |
| 5       | 70                | 113,5          | 113,2           | 112,4           | 110,8           | 109,4    | 108,0           | 104,3           | 100,3           | 96,9            | 94,6            | 93,8  |
| 6       | 60                | 103,1          | 102,4           | 100,2           | 97,3            | 95,9     | 94,8            | 92,6            | 90,9            | 89,6            | 88,7            | 88,4  |
| 7       | 50                | 90,9           | 89,6            | 86,3            | 83,5            | 82,4     | 81,7            | 80,7            | 80,5            | 81,1            | 81,6            | 81,8  |
| 8       | 40                | 77,2           | 76,0            | 72,8            | 70,0            | 69,0     | 68,4            | 68,0            | 68,7            | 70,5            | 73,1            | 74,1  |
| 9       | 30                | 62,7           | 62,1            | 60,4            | 58,1            | 57,2     | 56,7            | 56,3            | 57,0            | 58,6            | 61,4            | 63,5  |
| 10      | 20                | 47,7           | 47,5            | 47,1            | 46,5            | 46,0     | 45,7            | 45,4            | 45,7            | 46,5            | 47,4            | 47,7  |

Mullard

#### July







## HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 90<sup>o</sup> deflection angle
- 34 cm (14 in) face diagonal; rectangular glass
- 20 mm neck diameter
- Integral implosion protection

#### QUICK REFERENCE DATA

| Deflection angle      | 900                                                          |  |  |
|-----------------------|--------------------------------------------------------------|--|--|
| Face diagonal         | 34 cm (14 in)                                                |  |  |
| Overall length        | max. 287 mm                                                  |  |  |
| Neck diameter         | 20 mm                                                        |  |  |
| Heating               | 12 V/130 mA                                                  |  |  |
| Quick heating cathode | with a typical tube a legible picture will appear within 5 s |  |  |
| Grid 2 voltage        | 400 V                                                        |  |  |
| Anode voltage         | 14 kV                                                        |  |  |
| Resolution            | approx. 1300 lines                                           |  |  |

#### APPLICATION

These high resolution tubes are for alpha-numeric and graphic display applications, such as computer terminals, small business computers, etc.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

#### AVAILABLE VERSIONS

The following versions are available:

- M32EAB0 normal glare and normal tinted face glass;
- M32EAB1 direct grind and normal tinted face glass;
- M32EAB2 direct grind and dark tinted face glass;
- M32EAB3 direct etch and dark tinted face glass;
- M32EAB4 high glare and dark tinted face glass.

orange binder, tab 3

## M32EAB0 M32EAB1 M32EAB2 M32EAB3 M32EAB4

#### ELECTRICAL DATA

| Focusing method                                                                                  | electrostatic                                                                 |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Deflection method                                                                                | magnetic                                                                      |
| Deflection angles<br>diagonal<br>horizontal<br>vertical                                          | approx. 90 <sup>0</sup><br>approx. 82 <sup>0</sup><br>approx. 67 <sup>0</sup> |
| Interelectrode capacitances<br>cathode to all other electrodes<br>grid 1 to all other electrodes | max. 4 pF<br>max. 7 pF                                                        |
| Capacitance of external conductive coating to anode*                                             | max. 1200 pF<br>min. 600 pF                                                   |
| Capacitance of external conductive coating to anode**                                            | max. 1050 pF<br>min. 450 pF                                                   |
| Capacitance of anode to implosion protection hardware**                                          | approx. 150 pF                                                                |
| Heater voltage                                                                                   | 12 V                                                                          |
| Heater current at 12 V                                                                           | 130 mA                                                                        |
|                                                                                                  |                                                                               |

#### OPTICAL DATA

Phosphor type

Light transmission at screen centre tube with normal tinted face glass tube with dark tinted face glass see "High resolution monochrome display tubes, General"

approx. 48% approx. 34%

#### **RASTER CENTRING**

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

\* Implosion protection hardware connected to external conductive coating.

\*\* Implosion protection hardware not connected to external conductive coating.

Mullard

March 1985

MECHANICAL DATA (see also the figures under Dimensional Data)

| Overall length                                                          | max. 287 mm              |
|-------------------------------------------------------------------------|--------------------------|
| Greatest dimensions of tube                                             |                          |
| diagonal                                                                | 350 mm                   |
| width                                                                   | 298 mm                   |
| height                                                                  | 240 mm                   |
| Minimum useful screen dimensions (projected)                            |                          |
| diagonal                                                                | 322 mm                   |
| horizontal axis                                                         | 270 mm                   |
| vertical axis                                                           | 210 mm                   |
| area                                                                    | 554 cm <sup>2</sup>      |
| Implosion protection                                                    | T-band                   |
| Bulb                                                                    | EIA-J340B1 or EIA-J340D1 |
| Bulb contact designation                                                | IEC 67-III-2, EIAJ1-21   |
| Base designation                                                        | EIA-E7-91                |
| Basing                                                                  | 7GR                      |
| Mass                                                                    | approx. 3,6 kg           |
| RATINGS (Absolute Maximum System)                                       |                          |
| Unless otherwise specified voltage values are positive and measured wit | h respect to grid 1.     |
| Anode voltage                                                           | max. 16 kV               |
| , node voltage                                                          | min. 10 kV               |
| Grid 4 (focusing electrode) voltage                                     | -200 to + 1000 V         |
| Grid 2 voltage                                                          | max. 700 V               |
| Anode current                                                           |                          |
| long-term average value                                                 | max. 130 μA              |

| Anode voltage                                          | max. 16 kV<br>min. 10 kV   |
|--------------------------------------------------------|----------------------------|
| Grid 4 (focusing electrode) voltage                    | -200 to + 1000 V           |
| Grid 2 voltage                                         | max. 700 V                 |
| Anode current<br>long-term average value<br>peak value | max. 130 μA<br>max. 600 μA |
| Cathode voltage, positive peak value                   | max. 400 V                 |
| Heater voltage                                         | 12 V ± 10%*                |
| Cathode-to-heater voltage                              | max. 200 V                 |
|                                                        |                            |

\* For maximum cathode life it is recommended that the heater supply be regulated at 12 V.



#### **CIRCUIT DESIGN VALUES**

| Grid 4 current                                           |         |        |
|----------------------------------------------------------|---------|--------|
| positive                                                 | max.    | 25 µA  |
| negative                                                 | max.    | 25 µA  |
| Grid 2 current                                           |         |        |
| positive                                                 | max.    | 5 μΑ   |
| negative                                                 | max.    | 5 μΑ   |
| MAXIMUM CIRCUIT VALUES                                   |         |        |
| Resistance between cathode and heater                    | max.    | 1 MΩ   |
| Impedance between cathode and heater                     | max.    | 0,1 MΩ |
| Grid 1 circuit resistance                                | max.    | 1,5 MΩ |
| Grid 1 circuit impedance                                 | max.    | 0,5 MΩ |
| a                                                        |         |        |
| TYPICAL OPERATING CONDITIONS                             |         |        |
| Cathode drive; voltages specified with respect to grid 1 |         |        |
| Anode voltage                                            | 14 kV   |        |
| Grid 4 (focusing electrode) voltage                      | 0 to 30 | 0 V*   |
| Grid 2 voltage                                           | 400 V   |        |
| Cathode cut-off voltage                                  | 32 to 6 | 4 V**  |
| Grid drive; voltages specified with respect to cathode   |         |        |
| Anode voltage                                            | 14 kV   |        |
| Grid 4 (focusing electrode) voltage                      | 0 to 30 | 0 V*   |
| Grid 2 voltage                                           | 400 V   |        |
| Grid 1 cut-off voltage                                   | 35 to 7 | 0 V**  |

#### RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre, with shrinking raster method, at light output =  $68,5 \text{ cd/m}^2$  (20 foot lambert), grid 2 voltage = 700 V, anode voltage = 14 kV; phosphor type WW, without anti-glare treatment, raster dimensions 237 mm x 178 mm.

#### X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

\* Measured at screen centre on spot at anode current =  $250 \,\mu$ A (peak), anode voltage =  $14 \,k$ V, grid 2 voltage =  $400 \,V$ .

**Dynamic focus** (only for optimization): Typical correction for a video field of  $H \times V = 237 \text{ mm} \times 178 \text{ mm}$ : line parabola 200 V,

field parabola 100 V.

\*\* Visual extinction of focused raster.

March 1985



X-radiation limit curve according to JEDEC94, at a constant anode current of 250  $\mu$ A, measured according to TEPAC103A.



0,5 mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

## M32EAB0 M32EAB1 M32EAB2 M32EAB3 M32EAB4



Anode current as a function of cathode voltage. Cathode drive;  $V_{a,g3,g5} = 14 \text{ kV}$ .



Anode current as a function of grid 1 voltage. Grid drive;  $V_{a,g3,g5} = 14 \text{ kV}.$ 

Mullard



March 1985



Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive;  $V_{a,g3,g5}$  = 14 kV.

$$\frac{\Delta V_{KR}}{\Delta V_{a,g3,g5}} = 0,15 \times 10^{-3}.$$



Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive;  $V_{a,g3,g5} = 14 \text{ kV}$ .

$$\frac{\Delta V_{\text{GR}}}{\Delta V_{a,g3,g5}} = 0,15 \times 10^{-3}.$$

#### DIMENSIONAL DATA

Dimensions in mm





(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

Mullard



1

# Mullard

March 1985



Front view





March 1985

Mullard

Maximum cone contour





| sec-<br>tion | nom.<br>distance<br>from section 1 | max. distance from centre |                 |                 |                 |       |       |                 |                 |                 |                 |                 |
|--------------|------------------------------------|---------------------------|-----------------|-----------------|-----------------|-------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
|              |                                    | 00                        | 10 <sup>0</sup> | 20 <sup>0</sup> | 30 <sup>0</sup> | diag. | 400   | 50 <sup>0</sup> | 60 <sup>0</sup> | 70 <sup>0</sup> | 80 <sup>0</sup> | 90 <sup>0</sup> |
| 1            | 0                                  | 147,8                     | 149,8           | 158,2           | 167,9           | 173,6 | 172,0 | 151,5           | 135,5           | 125,7           | 120,3           | 118,6           |
| 2            | 10                                 | 147,7                     | 149,8           | 156,1           | 166,8           | 171,5 | 169,8 | 150,9           | 135,2           | 125,5           | 120,2           | 118,5           |
| 3            | 20                                 | 146,7                     | 148,7           | 154,6           | 162,7           | 165,3 | 163,7 | 149,0           | 135,5           | 125,1           | 119,9           | 118,2           |
| 4            | 30                                 | 143,4                     | 145,2           | 149,9           | 155,3           | 156,1 | 154,8 | 144,1           | 131,9           | 131,9           | 118,4           | 116,8           |
| 5            | 40                                 | 137,7                     | 139,1           | 142,3           | 145,0           | 144,9 | 143,8 | 136,7           | 127,5           | 120,1           | 115,7           | 114,2           |
| 6            | 50                                 | 129,6                     | 130,6           | 132,2           | 133,1           | 132,6 | 131,8 | 127,3           | 121,2           | 115,5           | 111,8           | 110,5           |
| 7            | 60                                 | 119,6                     | 119,9           | 120,3           | 120,2           | 119,6 | 119,0 | 116,5           | 112,9           | 109,3           | 106,5           | 105,5           |
| 8            | 70                                 | 108,1                     | 107,9           | 107,4           | 106,8           | 106,2 | 105,9 | 104,5           | 102,7           | 100,7           | 99,1            | 98,4            |
| 9            | 80                                 | 95,3                      | 94,9            | 94,2            | 93,4            | 92,9  | 92,6  | 91,8            | 90,9            | 90,1            | 98,2            | 88,0            |
| 10           | 90                                 | 80,7                      | 80,5            | 80,0            | 79,6            | 79,4  | 79,2  | 78,9            | 78,5            | 78,2            | 77,9            | 77,7            |
| 11           | 100                                | 67,3                      | 67,3            | 67,2            | 67,1            | 67,1  | 67,1  | 67,1            | 67,0            | 67,0            | 66,9            | 66,8            |
| 12           | 110                                | 56,7                      | 56,7            | 56,6            | 56,7            | 56,7  | 56,7  | 56,7            | 56,8            | 56,8            | 56,7            | 56,7            |
| 13           | 120                                | 46,5                      | 46,5            | 46,5            | 46,5            | 46,5  | 46,6  | 46,6            | 46,6            | 46,6            | 46,6            | 46,5            |
| 14           | 130                                | 36,7                      | 36,7            | 36,7            | 36,7            | 36,7  | 36,7  | 36,8            | 36,8            | 36,8            | 36,8            | 36,7            |
| 15           | 140                                | 26,7                      | 26,6            | 26,6            | 26,6            | 26,7  | 26,7  | 26,7            | 26,7            | 26,7            | 26,7            | 26,7            |
| 16           | 150                                | 20,1                      | 20,1            | 20,1            | 20,1            | 20,1  | 20,1  | 20,1            | 20,1            | 20,1            | 20,1            | 20,1            |
| 17           | 160                                | 19,7                      | 19,7            | 19,7            | 19,7            | 19,7  | 19,7  | 19,8            | 19,8            | 19,8            | 19,7            | 19,7            |

Mullard

March 1985


### FLAT HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 90<sup>0</sup> deflection angle
- 34 cm (14 in) face diagonal; rectangular glass
- 1520 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

#### QUICK REFERENCE DATA

| Deflection angle      | 90 <sup>o</sup>                                              |
|-----------------------|--------------------------------------------------------------|
| Face diagonal         | 34 cm (14 in)                                                |
| Overall length        | max. 282 mm                                                  |
| Neck diameter         | 20 mm                                                        |
| Heating               | 12 V/130 mA                                                  |
| Quick heating cathode | with a typical tube a legible picture will appear within 5 s |
| Grid 2 voltage        | 400 V                                                        |
| Anode voltage         | 14 kV                                                        |
| Resolution            | approx. 1300 lines                                           |

#### APPLICATION

This high resolution tube is for alpha-numeric and graphic display applications, such as computer terminals, small business computers, etc.

#### AVAILABLE VERSIONS

The following versions are available: M32EBJ and M32EBL.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

Differences between the tubes can be found under 'Dimensional data'.

### M32EBJ M32EBL

| ELECTRICAL DATA                                                                                  |                                                                               |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Focusing method                                                                                  | electrostatic                                                                 |
| Deflection method                                                                                | magnetic                                                                      |
| Deflection angles<br>diagonal<br>horizontal<br>vertical                                          | approx. 90 <sup>0</sup><br>approx. 79 <sup>0</sup><br>approx. 65 <sup>0</sup> |
| Interelectrode capacitances<br>cathode to all other electrodes<br>grid 1 to all other electrodes | max. 4 pF<br>max. 7 pF                                                        |
| Capacitance of external conductive coating to anode*                                             | max. 1200 pF<br>min. 600 pF                                                   |
| Capacitance of external conductive coating to anode**                                            | max. 1050 pF<br>min. 450 pF                                                   |
| Capacitance of anode to implosion protection hardware**                                          | approx. 150 pF                                                                |
| Heater voltage                                                                                   | 12 V                                                                          |
| Heater current at 12 V                                                                           | 130 mA                                                                        |
| OPTICAL DATA                                                                                     |                                                                               |
| Phosphor type                                                                                    | see ''High resolution mono-<br>chrome display tubes, General''                |

Light transmission at screen centre tube with normal tinted face glass approx. 42% tube with dark tinted face glass approx. 30%

#### RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

\* Implosion protection hardware connected to external conductive coating.

\*\* Implosion protection hardware not connected to external conductive coating.

| MECHANICAL DATA (see also the figures under Dimensional Data)                                        |                                                   |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Overall length                                                                                       | max. 282 mm                                       |
| Greatest dimensions of tube<br>diagonal<br>width<br>height                                           | 348,5 mm<br>298 mm<br>240 mm                      |
| Minimum useful screen dimensions (projected)<br>diagonal<br>horizontal axis<br>vertical axis<br>area | 320 mm<br>269 mm<br>210 mm<br>554 cm <sup>2</sup> |
| Implosion protection                                                                                 | T-band/rimband                                    |
| Bulb                                                                                                 | EIAJ-JB340AH03 or<br>EIAJ-JB340AH04               |
| Bulb contact designation                                                                             | IEC 67-III-2, EIAJ1-21                            |
| Base designation                                                                                     | EIA-E7-91                                         |
| Basing                                                                                               | 7GR                                               |
| Mass                                                                                                 | approx. 3,9 kg                                    |
| RATINGS (Absolute Maximum System)                                                                    |                                                   |
| Unless otherwise specified voltage values are positive and measured with                             | respect to grid 1.                                |
| Anode voltage                                                                                        | max. 16 kV<br>min. 10 kV                          |
| Grid 4 (focusing electrode) voltage                                                                  | -200 to + 1000 V                                  |
| Grid 2 voltage                                                                                       | max. 700 V                                        |
| Anode current<br>long-term average value<br>peak value                                               | max. 130 μA<br>max. 600 μA                        |
| Cathode voltage, positive peak value                                                                 | max. 400 V                                        |
| Heater voltage                                                                                       | 12 V ± 10%*                                       |
| Cathode-to-heater voltage                                                                            | max. 100 V                                        |

\* For maximum cathode life it is recommended that the heater supply be regulated at 12 V  $^{+0\%}_{-5\%}$ .



#### **CIRCUIT DESIGN VALUES**

| Grid 4 current                                           |         |        |
|----------------------------------------------------------|---------|--------|
| positive                                                 | max.    | 25 µA  |
| negative                                                 | max.    | 25 μΑ  |
| Grid 2 current                                           |         |        |
| positive                                                 | max.    | 5μΑ    |
| negative                                                 | max.    | 5 μΑ   |
| MAXIMUM CIRCUIT VALUES                                   |         |        |
| Resistance between cathode and heater                    | max.    | 1 MΩ   |
| Impedance between cathode and heater                     | max.    | 0,1 MΩ |
| Grid 1 circuit resistance                                | max.    | 1,5 MΩ |
| Grid 1 circuit impedance                                 | max.    | 0,5 MΩ |
| TYPICAL OPERATING CONDITIONS                             |         |        |
| Cathode drive; voltages specified with respect to grid 1 |         |        |
| Anode voltage                                            | 14 kV   |        |
| Grid 4 (focusing electrode) voltage                      | 0 to 3  | 00 V*  |
| Grid 2 voltage                                           | 400 V   |        |
| Cathode cut-off voltage                                  | 32 to 6 | 64 V** |
| Grid drive; voltages specified with respect to cathode   |         |        |
| Anode voltage                                            | 14 kV   |        |
| Grid 4 (focusing electrode) voltage                      | 0 to 30 | 00 V*  |
| Grid 2 voltage                                           | 400 V   |        |
| Grid 1 cut-off voltage                                   | 35 to 7 | 70 V** |

#### RESOLUTION

The resolution is approx. 1300 lines. It is measured at the screen centre:

- with shrinking raster method,
- at light output 68,5 cd/m<sup>2</sup> (20 foot lambert) and raster dimensions 237 mm x 178 mm,
- at V<sub>g2</sub> = 700 V and anode voltage = 14 kV,
- with phosphor type WW,
- with normal tinted face glass, without anti-glare treatment of screen surface.

#### X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0.5 mR/h throughout the useful life of the tube, when operated within the given ratings.

- Measured at screen centre on spot at anode current = 250 μA (peak), anode voltage = 14 kV, grid 2 voltage = 400 V.
  Dynamic focus (only for optimization): Typical correction for a video field of H x V = 237 mm x 178 mm:
  - line parabola 200 V, field parabola 100 V,
- \*\* Visual extinction of focused raster.

May 1987





X-radiation limit curve according to JEDEC94, at a constant anode current of 250  $\mu$ A, measured according to TEPAC103A.



 $0.5\ mR/h$  isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

# 0

### Mullard

May 1987

M32EBJ M32EBL







Anode current as a function of grid 1 voltage. Grid drive;  $V_{a,g3,g5} = 14 \text{ kV}$ .

May 1987

### Mullard

 $\mathbf{\nabla}$ 





Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive; V\_{a,g3,g5} = 14 kV.



Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive;  $V_{a,g3,g5}$  = 14 kV.

 $\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0.9 \times 10^{-3}.$ 

### 5

### Mullard

May 1987

M32EBJ M32EBL

DIMENSIONAL DATA

Dimensions in mm



(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

May 1987





9

#### Front view of tube M32EBJ





May 1987

# Mullard

U

M32EBJ M32EBL

Front view and lug dimensions of tube M32EBL







(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 290,3 mm x 231,7 mm.



M32EBJ M32EBL

#### Maximum cone contour





| sec- | nom.           |        | max. distance from centre |        |        |        |        |        |        |        |        |        |
|------|----------------|--------|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| tion | from section 1 | 0,00   | 10,00                     | 20,00  | 30,00  | 36,50  | 40,00  | 50,00  | 60,00  | 70,00  | 80,00  | 90,00  |
| 1    | 0              | 147,75 | 149,80                    | 156,19 | 167,63 | 173,43 | 171,77 | 151,39 | 135,49 | 125,67 | 120,31 | 118,60 |
| 2    | 10             | 146,15 | 148,17                    | 154,42 | 165,14 | 170,27 | 168,65 | 149,73 | 134,26 | 124,62 | 119,34 | 117,66 |
| 3    | 20             | 142,36 | 144,25                    | 149,91 | 158,20 | 161,07 | 159,63 | 145,28 | 131,24 | 122,14 | 117,11 | 115,50 |
| 4    | 30             | 136,49 | 138,18                    | 142,87 | 148,45 | 149,74 | 148,65 | 138,71 | 126,91 | 118,58 | 113,89 | 112,39 |
| 5    | 40             | 128,75 | 130,16                    | 133,72 | 137,36 | 137,91 | 137,07 | 130,27 | 121,08 | 113,85 | 109,61 | 108,23 |
| 6    | 50             | 119,35 | 120,49                    | 123,12 | 125,56 | 125,86 | 125,30 | 120,77 | 113,97 | 108,01 | 104,28 | 103,05 |
| 7    | 60             | 108,70 | 109,58                    | 111,51 | 113,24 | 113,50 | 113,19 | 110,37 | 105,66 | 101,04 | 97,92  | 96,84  |
| 8    | 70             | 97,64  | 98,27                     | 99,58  | 100,70 | 100,90 | 100,74 | 99,10  | 96,11  | 92,85  | 90,43  | 89,53  |
| 9    | 80             | 86,29  | 86,69                     | 87,45  | 88,06  | 88,14  | 88,04  | 87,11  | 85,36  | 83,31  | 81,62  | 80,93  |
| 10   | 90             | 74,00  | 74,26                     | 74,72  | 75,09  | 75,14  | 75,10  | 74,60  | 73,64  | 72,44  | 71,37  | 70,90  |
| 11   | 100            | 60,59  | 60,78                     | 61,12  | 61,41  | 61,51  | 61,52  | 61,35  | 60,93  | 60,34  | 59,78  | 59,50  |
| 12   | 110            | 51,89  | 51,97                     | 52,09  | 52,20  | 52,23  | 52,24  | 52,19  | 52,07  | 51,90  | 51,73  | 51,64  |

Mullard

May 1987

M87-1323/TK

### DEVELOPMENT DATA This data sheet contains advance information and

specifications are subject to change without notice.



### FLAT HIGH RESOLUTION MONOCHROME DISPLAY TUBES

- For Data Graphic Displays
- 90<sup>o</sup> deflection angle
- 34 cm (14 in) face diagonal; rectangular glass
- 1520 mm radius of screen curvature
- 20 mm neck diameter
- Integral implosion protection

#### QUICK REFERENCE DATA

| Deflection angle | 90 <sup>o</sup>    |
|------------------|--------------------|
| Face diagonal    | 34 cm (14 in)      |
| Overall length   | max. 282 mm        |
| Neck diameter    | 20 mm              |
| Heating          | 12 V/75 mA         |
| Grid 2 voltage   | 400 V              |
| Anode voltage    | 14 kV              |
| Resolution       | approx. 1000 lines |

#### APPLICATION

These high resolution tubes are for alpha-numeric and graphic display applications, such as computer terminals, small business computers, etc.

#### AVAILABLE VERSIONS

The following versions are available: M32EBM and M32EBN.

The tubes can be supplied with different phosphors and anti-reflective treatments, see "High resolution monochrome display tubes, General".

Differences between the tubes can be found under 'Dimensional Data'.

# 5

### M32EBM M32EBN

#### ELECTRICAL DATA

| Focusing method                                                                                  | electrostatic                                                                 |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|
| Deflection method                                                                                | magnetic                                                                      |  |  |  |
| Deflection angles<br>diagonal<br>horizontal<br>vertical                                          | approx. 90 <sup>0</sup><br>approx. 79 <sup>0</sup><br>approx. 65 <sup>0</sup> |  |  |  |
| Interelectrode capacitances<br>cathode to all other electrodes<br>grid 1 to all other electrodes | max. 5 pF<br>max. 6 pF                                                        |  |  |  |
| Capacitance of external conductive coating to anode*                                             | max. 1200 pF<br>min. 600 pF                                                   |  |  |  |
| Capacitance of external conductive coating to anode**                                            | max. 1050 pF<br>min. 450 pF                                                   |  |  |  |
| Capacitance of anode to implosion protection hardware**                                          | approx. 150 pF                                                                |  |  |  |
| Heater voltage                                                                                   | 12 V                                                                          |  |  |  |
| Heater current at 12 V                                                                           | 75 mA                                                                         |  |  |  |
| OPTICAL DATA                                                                                     |                                                                               |  |  |  |
| Phosphor type                                                                                    | see "High resolu                                                              |  |  |  |

Light transmission at screen centre tube with normal tinted face glass tube with dark tinted face glass see "High resolution monochrome display tubes, General"

approx. 42% approx. 30%

#### RASTER CENTRING

The field intensity perpendicular to the tube axis should be adjustable from 0 to 800 A/m. For optimum overall sharpness it is recommended to centre the raster electrically via the deflection coils.

\* Implosion protection hardware connected to external conductive coating.

\*\* Implosion protection hardware not connected to external conductive coating.

Mullard

2

| MECHANICAL DATA (see also the figures under Dimensional Data)                                        |                                                   |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Overall length                                                                                       | max. 282 mm                                       |
| Greatest dimensions of tube<br>diagonal<br>width<br>height                                           | 348,5 mm<br>298 mm<br>240 mm                      |
| Minimum useful screen dimensions (projected)<br>diagonal<br>horizontal axis<br>vertical axis<br>area | 320 mm<br>269 mm<br>210 mm<br>554 cm <sup>2</sup> |
| Implosion protection                                                                                 | T-band/rimband                                    |
| Bulb                                                                                                 | EIAJ-JB340AH03 or<br>EIAJ-JB340AH04               |
| Bulb contact designation                                                                             | IEC 67-III-2, EIAJ1-21                            |
| Base designation                                                                                     | EIA-E7-91                                         |
| Basing                                                                                               | 7GR                                               |
| Mass                                                                                                 | approx. 3,9 kg                                    |
| RATINGS (Absolute Maximum System)                                                                    |                                                   |
| Unless otherwise specified voltage values are positive and measured with                             | respect to grid 1.                                |
| Anode voltage                                                                                        | max. 16 kV<br>min. 10 kV                          |
| Grid 4 (focusing electrode) voltage                                                                  | -550 to + 1100 V                                  |
| Grid 2 voltage                                                                                       | max. 550 V                                        |
| Anode current<br>long-term average value<br>peak value                                               | max. 100 μA<br>max. 150 μA                        |
| Cathode voltage, positive peak value                                                                 | max. 220 V                                        |
| Heater voltage                                                                                       | 12 V ± 10%*                                       |
| Cathode-to-heater voltage                                                                            | max. 100 V                                        |

\* For maximum cathode life it is recommended that the heater supply be regulated at 12 V  $^{+0\%}_{-5\%}$ .



#### CIRCUIT DESIGN VALUES

| Grid 4 current<br>positive<br>negative                   | max.<br>max. | 25 μΑ<br>25 μΑ |
|----------------------------------------------------------|--------------|----------------|
| Grid 2 current<br>positive<br>negative                   | max.<br>max. | 5 μΑ<br>5 μΑ   |
| MAXIMUM CIRCUIT VALUES                                   |              |                |
| Resistance between cathode and heater                    | max.         | 1 MΩ           |
| Impedance between cathode and heater                     | max.         | 0,1 MΩ         |
| Grid 1 circuit resistance                                | max.         | 1,5 MΩ         |
| Grid 1 circuit impedance                                 | max.         | 0,5 MΩ         |
| TYPICAL OPERATING CONDITIONS                             |              |                |
| Cathode drive; voltages specified with respect to grid 1 |              |                |
| Anode voltage                                            | 14 kV        |                |
| Grid 4 (focusing electrode) voltage                      | 0 to 4       | 00 V*          |
| Grid 2 voltage                                           | 400 V        |                |
| Cathode cut-off voltage                                  | 38 to 6      | 68 V**         |
| Grid drive; voltages specified with respect to cathode   |              |                |
| Anode voltage                                            | 14 kV        |                |
| Grid 4 (focusing electrode) voltage                      | 0 to 4       | 00 V*          |
| Grid 2 voltage                                           | 400 V        |                |
| Grid 1 cut-off voltage                                   | 41 to        | 75 V**         |

#### RESOLUTION

The resolution is approx. 1000 lines. It is measured at the screen centre:

- with shrinking raster method,
- at light output 68,5 cd/m<sup>2</sup> (20 foot lambert) and raster dimensions 237 mm x 178 mm,
- at  $V_{q2} = 550$  V and anode voltage = 14 kV,
- with phosphor type WW,
- with normal tinted face glass, without anti-glare treatment of screen surface.

#### X-RADIATION CHARACTERISTIC

X-radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube, when operated within the given ratings.

\* Measured at screen centre on spot at anode current =  $50 \mu A$  (peak), anode voltage = 14 kV, grid 2 voltage = 400 V.

**Dynamic focus** (only for optimization): Typical correction for a video field of  $H \times V = 237 \text{ mm} \times 178 \text{ mm}$ : line parabola 200 V,

- field parabola 100 V.
- \*\* Visual extinction of focused raster.

987





X-radiation limit curve according to JEDEC94, at a constant anode current of 250  $\mu$ A, measured according to TEPAC103A.



0,5~mR/h isoexposure-rate limit curve, according to JEDEC94, measured according to TEPAC103A.

### Mullard

May 1987



Anode current as a function of cathode voltage. Cathode drive;  $V_{a,g3,g5} = 14 \text{ kV}$ .



Anode current as a function of grid 1 voltage. Grid drive;  $V_{a,g3,g5}$  = 14 kV.

May 1987

### Mullard

U





Limits of cathode cut-off voltage as a function of grid 2 voltage. Cathode drive;  $V_{a,q3,q5} = 14 \text{ kV}$ .



Limits of grid 1 cut-off voltage as a function of grid 2 voltage. Grid drive;  $V_{a,g3,g5}$  = 14 kV.

 $\frac{\Delta V_{GR}}{\Delta V_{a,g3,g5}} = 0,15 \times 10^{-3}.$ 

### Mullard

May 1987

**DIMENSIONAL DATA** 

Dimensions in mm



(1) The reference line is determined by the plane of the upper edge of reference line gauge D when the gauge is resting on the cone.

Mullard

May 1987

8





M32EBM M32EBN

### Front view of tube M32EBM





Mullard

May 1987

M32EBM M32EBN

Front view and lug dimensions of tube M32EBN







(1) The mounting screws in the cabinet must be situated inside a circle of 5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of 290,3 mm x 231,7 mm.



May 1987

11

#### Maximum cone contour



| sec- | nom.           | max. distance from centre |        |        |        |        |        |        |        |        |        |        |
|------|----------------|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| tion | from section 1 | 0,00                      | 10,00  | 20,00  | 30,00  | 36,50  | 40,00  | 50,00  | 60,00  | 70,00  | 80,00  | 90,00  |
| 1    | 0              | 147,75                    | 149,80 | 156,19 | 167,63 | 173,43 | 171,77 | 151,39 | 135,49 | 125,67 | 120,31 | 118,60 |
| 2    | 10             | 146,15                    | 148,17 | 154,42 | 165,14 | 170,27 | 168,65 | 149,73 | 134,26 | 124,62 | 119,34 | 117,66 |
| 3    | 20             | 142,36                    | 144,25 | 149,91 | 158,20 | 161,07 | 159,63 | 145,28 | 131,24 | 122,14 | 117,11 | 115,50 |
| 4    | 30             | 136,49                    | 138,18 | 142,87 | 148,45 | 149,74 | 148,65 | 138,71 | 126,91 | 118,58 | 113,89 | 112,39 |
| 5    | 40             | 128,75                    | 130,16 | 133,72 | 137,36 | 137,91 | 137,07 | 130,27 | 121,08 | 113,85 | 109,61 | 108,23 |
| 6    | 50             | 119,35                    | 120,49 | 123,12 | 125,56 | 125,86 | 125,30 | 120,77 | 113,97 | 108,01 | 104,28 | 103,05 |
| 7    | 60             | 108,70                    | 109,58 | 111,51 | 113,24 | 113,50 | 113,19 | 110,37 | 105,66 | 101,04 | 97,92  | 96,84  |
| 8    | 70             | 97,64                     | 98,27  | 99,58  | 100,70 | 100,90 | 100,74 | 99,10  | 96,11  | 92,85  | 90,43  | 89,53  |
| 9    | 80             | 86,29                     | 86,69  | 87,45  | 88,06  | 88,14  | 88,04  | 87,11  | 85,36  | 83,31  | 81,62  | 80,93  |
| 10   | 90             | 74,00                     | 74,26  | 74,72  | 75,09  | 75,14  | 75,10  | 74,60  | 73,64  | 72,44  | 71,37  | 70,90  |
| 11   | 100            | 60,59                     | 60,78  | 61,12  | 61,41  | 61,51  | 61,52  | 61,35  | 60,93  | 60,34  | 59,78  | 59,50  |
| 12   | 110            | 51,89                     | 51,97  | 52,09  | 52,20  | 52,23  | 52,24  | 52,19  | 52,07  | 51,90  | 51,73  | 51,64  |

Mullard

May 1987

M87-1324/TK

00

1 4 6

8

10

10<sup>0</sup>

12

### HIGH RESOLUTION COLOUR DISPLAY TUBE ASSEMBLIES

- 90<sup>o</sup> deflection angle
- 37 cm (14 in) face diagonal
- 29,1 mm neck diameter
- Pigmented phosphors
- High resolution obtained by 0,29 mm dot triplet pitch and high-resolution in-line electron guns
- Hexagonal dot arrangement
- Black matrix screen for high brightness and contrast
- Internal magneto-static beam alignment
- Soft-Flash technology offering improved monitor reliability
- Internal magnetic shield
- Rimband type implosion protection (UL approved)
- Supplied as a pre-aligned, self-converging tube-coil assembly; dynamic convergence is not required

#### QUICK REFERENCE DATA

| 900                  |
|----------------------|
| 37 cm (14 in)        |
| 354 mm               |
| 29,1 mm              |
| 0,29 mm (0,011 in)   |
| 790 × 570            |
| 6,3 V/673 mA         |
| 26% of anode voltage |
|                      |

Available versions



\* Pixel = picture element.

Mullard

1

3

#### ELECTRON-OPTICAL DATA

| Electron gun system                                     | unitized in-line                                                              |
|---------------------------------------------------------|-------------------------------------------------------------------------------|
| Focusing method                                         | electrostatic                                                                 |
| Focus lens                                              | bi-potential                                                                  |
| Convergence method                                      | magnetic                                                                      |
| Deflection method                                       | magnetic                                                                      |
| Deflection angles<br>diagonal<br>horizontal<br>vertical | approx. 90 <sup>0</sup><br>approx. 78 <sup>0</sup><br>approx. 60 <sup>0</sup> |

#### ELECTRICAL DATA

#### Tube Capacitances anode to external conductive coating including max. 1300 pF rimband $C_{a(m + m')}$ min. 800 pF grid 1 of any gun to all other electrodes C<sub>q1</sub> 24 pF cathodes of all guns, connected in parallel, to all other electrodes 15 pF Ck cathode of any gun to all other electrodes C<sub>kB</sub>, C<sub>kG</sub>, C<sub>kB</sub> 5 pF focusing electrode to all other electrodes 6 pF Cq3 Heating indirect by a.c. or d.c. heater voltage Vf 6.3 V heater current 673 mA If

#### Deflection unit

|                                                            |                    | M37/./followed by |            |              |            |             |  |  |  |
|------------------------------------------------------------|--------------------|-------------------|------------|--------------|------------|-------------|--|--|--|
| parameter                                                  | unit               | 1020              | 1030       | 1031*        | 1040       | 1050*       |  |  |  |
| Line deflection coils, Fig. 1<br>inductance<br>resistance  | mH ± 4%<br>Ω ± 10% | 1,2<br>1,5        | 0,6<br>0,8 | 0,6<br>0,8   | 0,3<br>0,4 | 0,15<br>0,2 |  |  |  |
| Line deflection current,<br>edge to edge, at 25 kV         | А (р-р)            | 3,62              | 5,12       | 5,12         | 7,24       | 10,24       |  |  |  |
| Field deflection coils, Fig. 2<br>inductance<br>resistance | mH ± 10%<br>Ω ± 7% | 6,5<br>5,7        | 6,5<br>5,7 | 13,1<br>11,5 | 6,5<br>5,7 | 6,5<br>5,7  |  |  |  |
| Field deflection current,<br>edge to edge, at 25 kV        | А (р-р)            | 1,36              | 1,36       | 0,96         | 1,36       | 1,36        |  |  |  |

\* Under development.

High resolution colour display tube assemblies

M37-103X/./1000 M37-108X/./1000 M37-118X/./1000 SERIES

- Maximum permissible voltage between line and field coils between field coils and core Insulation resistance between line and field coils, at 1 kV (d.c.) between line coil and core clamping ring,
- at 500 V (d.c.) between field coil and core clamping ring, at 1000 V (d.c.)

Cross-talk

3000 V (d.c.) 300 V (d.c.)

500 MΩ

**30** MΩ

100 MΩ

a voltage of 1 V, 15625 Hz applied to the line coils causes no more than 20 mV across the field coils







7285962.1

Fig. 2 Field coils. R is factory adjusted.



Fig. 3 Terminal location of deflection coils.

OPTICAL DATA

| Screen                                                                                                       | metal-backed phosphor dot<br>triplets; black matrix                                            |                                                                                                        |                                                                                                       |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Screen finish                                                                                                | non-glare (direct etch) or high gloss                                                          |                                                                                                        |                                                                                                       |  |  |  |  |  |
| Useful screen dimensions<br>diagonal<br>horizontal axis<br>vertical axis<br>area                             | min. 335,4 mm<br>min. 280,8 mm<br>min. 210,6 mm<br>min. 580 cm <sup>2</sup>                    |                                                                                                        |                                                                                                       |  |  |  |  |  |
| Recommended useful screen dimensions for alphanumeric displa<br>diagonal<br>horizontal axis<br>vertical axis | y<br>307 mm<br>244 mm<br>186 mm                                                                |                                                                                                        |                                                                                                       |  |  |  |  |  |
| Phosphor<br>red<br>green<br>blue                                                                             | rare earth, pigmented<br>sulphide type<br>sulphide type, pigmented                             |                                                                                                        |                                                                                                       |  |  |  |  |  |
| Persistance                                                                                                  | medium short                                                                                   |                                                                                                        |                                                                                                       |  |  |  |  |  |
| Phosphor colour co-ordinates<br>red<br>green<br>blue                                                         | x = 0,635; y = 0,340<br>x = 0,315; y = 0,600<br>x = 0,150; y = 0,060                           |                                                                                                        |                                                                                                       |  |  |  |  |  |
| Dot arrangement                                                                                              | hexagonal                                                                                      |                                                                                                        |                                                                                                       |  |  |  |  |  |
| Spacing between centres of adjacent dot triplets                                                             | approx. 0,29 mm (0,011 in)                                                                     |                                                                                                        |                                                                                                       |  |  |  |  |  |
|                                                                                                              | M37-103X                                                                                       | M37-108X                                                                                               | M37-118X                                                                                              |  |  |  |  |  |
| Light transmission of face glass at screen centre                                                            | approx.85%                                                                                     | approx.57%                                                                                             | approx.46%                                                                                            |  |  |  |  |  |
| Luminance at screen centre*<br>red<br>green<br>blue<br>white (x = 0,287, y = 0,292)**<br>Reflectivity        | 41 cd/m <sup>2</sup><br>150 cd/m <sup>2</sup><br>21 cd/m <sup>2</sup><br>212 cd/m <sup>2</sup> | 27 cd/m <sup>2</sup><br>100 cd/m <sup>2</sup><br>13,5 cd/m <sup>2</sup><br>142 cd/m <sup>2</sup><br>8% | 22 cd/m <sup>2</sup><br>81 cd/m <sup>2</sup><br>11 cd/m <sup>2</sup><br>114 cd/m <sup>2</sup><br>5 5% |  |  |  |  |  |
|                                                                                                              |                                                                                                |                                                                                                        | 0,070                                                                                                 |  |  |  |  |  |

Measuring conditions: I<sub>ap</sub> per gun = 200 μA, scan duty cycle = 75%; scanned area = 244 mm x 186 mm.
 \*\* Three guns activated, ratio of anode currents = 1:1:1.

4

#### Resolution

see Table below; values shown are measured under following conditions:

 $V_a = 25 \text{ kV}$ ,  $V_k = 100 \text{ V}$ ,  $V_{g3}$  adjusted for minimum width of vertical white lines at half east or half west zone; sine-wave drive voltage; horizontal raster scan of H x V = 244 mm x 186 mm

| modulation | min. number of resolvable picture elements (n.H x n.V) |                                   |                                        |  |  |  |  |  |  |
|------------|--------------------------------------------------------|-----------------------------------|----------------------------------------|--|--|--|--|--|--|
| depth      | $I_a = 100 \mu\text{A}$ per gun                        | $I_a = 200 \mu A \text{ per gun}$ | $I_{ap} = 400 \ \mu A \text{ per gun}$ |  |  |  |  |  |  |
| -6 dB      | 830 x 560                                              | 700 x 510                         | 490 x 400                              |  |  |  |  |  |  |
| -9 dB      | 950 x 620                                              | 790 x 570                         | 530 x 440                              |  |  |  |  |  |  |
| —12 dB     | 980 x 670                                              | 870 x 610                         | 600 x 470                              |  |  |  |  |  |  |
| —20 dB     | 980 x 780                                              | 980 x 690                         | 690 x 520                              |  |  |  |  |  |  |

#### Notes

- The resolution figures in the Table are worst-case values in the display area, and include losses of modulation depth due to deflection defocusing and screen texture; the resolution at the screen centre is in general higher.
- Limitations due to moiré effects are not taken into account; the maximum resolution imposed by the Shannon limit of the phosphor screen = n.H x n.V = 980 x 1150 (signal dot rate equals phosphor dot rate).

#### MECHANICAL DATA (see also the figures on the following pages)

| max. 353,7 ± 5 mm                                  |
|----------------------------------------------------|
| 29,1 mm                                            |
| 366,4 ± 1,6 mm<br>315,4 ± 1,6 mm<br>246,4 ± 1,6 mm |
| shrink type (UL, CSA and VDE approved)             |
| JEDEC J1-21; IEC 67-III-2                          |
| 10-pin base JEDEC B10-277                          |
| see Fig. 10                                        |
| approx. 6,4 kg                                     |
| anode contact on top                               |
|                                                    |

#### MECHANICAL DATA (continued)

Dimensions in mm

Notes are given after the drawings.







Fig. 4b.



Fig. 4c.



Fig. 5.

# Mullard

February 1987



Fig. 6.







Fig. 8.





### Fig. 9.

#### Notes to outline drawings on the preceding pages

- 1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max. 1 mm.
- 4. Minimum space to be reserved for mounting lug.
- The position of the mounting screw in the cabinet must be within a circle of 9,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 311,4 mm x 243,2 mm.
- 6. Co-ordinates for radius R = 11,6 mm: x = 126,98 mm, y = 90,76 mm.
- 7. Centre of gravity.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis. The mass of the mating socket with circuitry should not be more than 150 g; maximum permissible torque is 40 mNm.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate 3,2 mm beyond the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

M37-103X/./1000 M37-108X/./1000 M37-118X/./1000 SERIES

10-pin base; JEDEC B10-277





Fig. 11.

### Mullard

U

#### M37-103X/./1000 M37-108X/./1000 M37-118X/./1000 SERIES





Fig. 12.

| sec-<br>tion | nom.<br>distance<br>from<br>section 1 | distance from centre (max. values) |                 |                 |                 |                 |                     |               |                     |                 |                 |                 |                 |                 |                 |                 |
|--------------|---------------------------------------|------------------------------------|-----------------|-----------------|-----------------|-----------------|---------------------|---------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|              |                                       | 0 <sup>0</sup>                     | 10 <sup>0</sup> | 20 <sup>0</sup> | 25 <sup>0</sup> | 30 <sup>0</sup> | 32 <sup>0</sup> 30' | diag.<br>axes | 37 <sup>0</sup> 30' | 40 <sup>0</sup> | 45 <sup>0</sup> | 50 <sup>0</sup> | 60 <sup>0</sup> | 70 <sup>0</sup> | 80 <sup>0</sup> | 90 <sup>0</sup> |
| 1            | 0                                     | 157,2                              | 159,4           | 166,3           | 171,7           | 178,2           | 181,2               | 183,6         | 183,3               | 180,0           | 167,9           | 156,5           | 140,0           | 129,8           | 124,2           | 122,4           |
| 2            | 10                                    | 154,7                              | 156,9           | 163,5           | 168,5           | 174,1           | 176,6               | 178,1         | 177,7               | 174,8           | 164,4           | 153,7           | 137,8           | 127,9           | 122,4           | 120,7           |
| 3            | 20                                    | 148,8                              | 150,7           | 156,3           | 160,0           | 163,5           | 164,6               | 165,0         | 164,4               | 162,6           | 156,0           | 147,7           | 133,6           | 124,4           | 119,3           | 117,7           |
| 4            | 30                                    | 140,4                              | 142,1           | 146,2           | 148,6           | 150,5           | 151,0               | 151,1         | 150,7               | 149,6           | 145,6           | 140,0           | 128,6           | 120,3           | 115,7           | 114,2           |
| 5            | 40                                    | 130,3                              | 131,3           | 134,0           | 135,4           | 136,5           | 136,8               | 136,8         | 136,6               | 136,1           | 134,1           | 130,8           | 122,7           | 115,9           | 111,7           | 110,3           |
| 6            | 50                                    | 118,2                              | 118,8           | 120,1           | 120,9           | 121,6           | 121,8               | 122,0         | 122,0               | 121,9           | 121,2           | 119,8           | 115,4           | 110,5           | 107,0           | 105,8           |
| 7            | 60                                    | 104,9                              | 104,7           | 105,1           | 105,5           | 106,0           | 106,2               | 106,5         | 106,7               | 106,9           | 107,1           | 107,0           | 105,6           | 103,1           | 100,8           | 99,8            |
| 8            | 70                                    | 90,6                               | 89,9            | 89,8            | 90,0            | 90,4            | 90,6                | 90,9          | 91,1                | 91,4            | 91,9            | 92,3            | 92,5            | 91,7            | 90,4            | 89,7            |
| 9            | 77                                    | 79,9                               | 79,1            | 79,0            | 79,1            | 79,4            | 79,6                | 79,9          | 80,1                | 80,4            | 80,9            | 81,4            | 81,8            | 81,4            | 80,5            | 79,9            |
# RECOMMENDED OPERATING CONDITIONS (cathode drive)

The voltages are specified with respect to grid 1.

| Anode voltage                       | V <sub>a,g4</sub> | 25 kV         |
|-------------------------------------|-------------------|---------------|
| Grid 3 (focusing electrode) voltage | V <sub>g3</sub>   | 6,2 to 7,0 kV |
| Grid 2 voltage                      | V <sub>g2</sub>   | see Fig. 13   |





Grid 2 voltage (V<sub>g2</sub>) adjusted for highest gun spot cut-off voltage V<sub>k</sub> = 105 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage.

 $V_{g2}$  range 300 to 800 V

Vk range 80 to 105 V

Adjustment procedure:

Set the cathode voltage (V<sub>k</sub>) for each gun at 105 V; increase the grid 2 voltage (V<sub>g2</sub>) from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.





Fig. 14 Typical cathode drive characteristics at spot cut-off voltages of 80 V (curve a) and 105 V (curve b).  $V_f = 6,3 V; V_{a,g4} = 25 kV; V_{g3}$  adjusted for focus;  $V_{g2}$  adjusted to provide spot cut-off for desired  $V_k$ .

LIMITING VALUES (each gun if applicable)

### Tube

Design maximum rating system unless otherwise stated. The voltages are specified with respect to grid 1.

| Anode voltage                                  | V <sub>a,g4</sub> | min.         | 27,5       | кv<br>kV | note 3 |
|------------------------------------------------|-------------------|--------------|------------|----------|--------|
| Anode current for each gun, peak value         | lap               | max.         | 400        | μA       |        |
| Long term average anode current for each gun   | la                | max.         | 200        | μA       |        |
| Long term average anode current for three guns | la                | max.         | 450        | μA       |        |
| Grid 3 (focusing electrode) voltage            | V <sub>g3</sub>   | max.         | 10         | kV       |        |
| Grid 2 voltage, peak                           | V <sub>g2p</sub>  | max.         | 1000       | V        |        |
| Cathode voltage                                |                   |              |            |          |        |
| positive                                       | Vk                | max.         | 200        | V        |        |
| positive operating cut-off                     | Vk                | max.         | 130        | V        |        |
| negative                                       | $-V_k$            | max.         | 0          | V        |        |
| negative peak                                  | $-V_{kp}$         | max.         | 2          | V        |        |
| Cathode to heater voltage                      |                   |              |            |          |        |
| positive                                       | Vkf               | max.         | 150        | V        |        |
| positive peak                                  | Vkfp              | max.         | 200        | V        | note 1 |
| negative                                       | $-V_{kf}$         | max.         | 0          | V        |        |
| negative peak                                  | -V <sub>kfp</sub> | max.         | 100        | V        | note 1 |
| Heater voltage                                 | Vf                | max.<br>min. | 6,6<br>5,7 | V<br>V   | note 4 |
|                                                |                   |              |            |          |        |

# **Deflection unit**

Maximum operating copper temperature

Temperature rise of the coils ( $\Delta T$ )

M37-..././1020, M37-..././1030 and M37-..././1040 M37-..././1050

# Table A

| line frequency/<br>flyback time | temperat<br>line coils | ure rise (ΔT)<br>frame coils |
|---------------------------------|------------------------|------------------------------|
| 24 kHz/8 μs                     | 20 °C                  | 15 °C                        |
| 32 kHz/6 µs                     | 25 °C                  | 20 °C                        |
| 48 kHz/4 μs                     | 35 °C                  | 30 °C                        |

# LIMITING CIRCUIT VALUES

Grid 3 circuit resistance

Grid 1 to cathode circuit resistance (each gun)

# Notes

- 1. Absolute Maximum rating system.
- 2. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended first to make the necessary adjustments for normal operation.
- 3. Operation of the tube at lower voltages impairs the luminance and resolution.
- 4. For maximum cathode life, it is recommended that the heater supply be regulated at 6,0 V.

# Mullard

| able B          |            |                         |
|-----------------|------------|-------------------------|
| line frequency/ | temperatu  | are rise ( $\Delta T$ ) |
| flyback time    | line coils | frame coils             |
| 32 kHz/6 µs     | 17 °C      | 17 °C                   |
| 48 kHz/4 μs     | 23 °C      | 23 °C                   |
| 61 k Hz/2 up    | 22.00      | 22.00                   |

see Table A

see Table B

95 °C

7 E 1.1/

| 32 kHz/6 µs | 17 °C | 17 °C |  |
|-------------|-------|-------|--|
| 48 kHz/4 μs | 23 °C | 23 °C |  |
| 64 kHz/3 μs | 32 °C | 32 °C |  |
|             |       |       |  |

| R <sub>g3</sub>  | max. | 30   | MΩ |
|------------------|------|------|----|
| R <sub>g1k</sub> | max. | 0,75 | MΩ |

# FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV (1,5 x V<sub>g3</sub> max. at V<sub>a,g4</sub> = 25 kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min.  $0.5 \text{ k}\Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.



Fig. 15.

# X-RADIATION LIMIT

| Maximum anode voltage at which the X-radiation emitted will not exceed 0,5 mR/h at | an anode |
|------------------------------------------------------------------------------------|----------|
| current of 300 μA                                                                  |          |
| entire tube                                                                        | 31 kV*   |
| face-plate only                                                                    | 33 kV    |

### Warning:

If the value for the tube face only is used as design criterion, adequate shielding must be provided in the monitor for the anode contact and/or certain portions of the tube funnel and panel sidewalls to insure that the X-radiation from the monitor is attenuated to a value equal to or lower than that specified for the face of the tube.

Maximum voltage difference between anode and focus electrode at which the X-radiation will not exceed 0,5 mR/h

30 kV

### Warning:

If the voltage value above can be exceeded in the monitor additional attenuation of the X-radiation through the tube neck may be required.

The X-radiation emitted from this display tube, as measured in accordance with the procedure of TEPAC Publication No. 194, will not exceed 0,5 mR/h throughout the useful tube life when operated within the 'Design maximum ratings'.

The tube should not be operated beyond its 'Design maximum ratings' stated above, but its X-radiation will not exceed 0,5 mR/h for anode voltage and current combinations given by the isoexposure-rate limits characteristics shown on the next page.

Operation above the values shown by the curve may result in failure of the monitor to comply with the Federal Performance Standard of the U.S. for Television Receivers, Section 1020. 10 of Part 1020 of Title 21, Code of Federal Regulation (PL90-602) as published in the Federal Register Volume 38, No. 198, Monday, October 15, 1973.

Maximum X-radiation as a function of anode voltage at 300  $\mu$ A anode current is shown by the curve on the next page. X-radiation at a constant anode voltage varies linearly with anode current.

\* This rating applies only if the anode connector used by the set maker provides the necessary attenuation to reduce the X-radiation from the anode contact by a factor equal to the difference between the anode button isoexposure-rate limit curve and the isoexposure-rate limit curve for the entire tube.

16





Fig. 16 0,5 mR/h isoexposure-rate limit curve.



Fig. 17 X-radiation limit curve at a constant anode current of 300  $\mu$ A.

# WARNINGS

# X-radiation

Operation of this colour display tube under abnormal conditions which exceed the 0,5 mR/h iso-dose rate curve shown on the preceding page may produce soft X-rays which may constitute a health hazard on prolonged exposure at close range unless adequate external screening is provided. Precautions must therefore be exercised during servicing of monitors using this tube to ensure that the anode voltage and other tube voltages are adjusted to the recommended values so that the 'Design maximum ratings' are not exceeded.

# Tube replacement

This display tube incorporates integral X-radiation and implosion protection and must be replaced with a tube of the same type number or a recommended replacement to assure continued safety.

# Shock hazard

The high voltage at which the tube is operated may be very dangerous. The monitor should include safeguards to prevent the user from coming in contact with the high voltage. Extreme care should be taken in servicing or adjustment of any high-voltage circuit.

Caution must be exercised during the replacement or servicing of the display tube since a residual electrical charge may be held by the high-voltage capacitor formed by the external and internal conductive coatings of the display tube funnel. To remove any residual charge, short the anode contact button, located in the funnel of the tube, to the external conductive coating before handling the tube. Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

# Tube handling

Display tubes should be kept in the shipping box or similar protective container will just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.

The packing should incorporate sufficient cushioning so that under normal conditions of shipment or handling an impact acceleration of more than 35g is never applied to the tube.



# High resolution colour display tube assemblies

# M37-103X/./1000 M37-108X/./1000 M37-118X/./1000 SERIES



# M37-103X

Luminance at the centre of the screen as a function of  ${\rm I}_{\mbox{total}}.$ 

 $V_{a,g4} = 25 \text{ kV}$ ;  $V_f = 6,3 \text{ V}$ ;  $V_{g3}$  adjusted for optimum focus. Raster size = 244 x 186 mm<sup>2</sup>.





## M37-108X

Luminance at the centre of the screen as a function of  $\mathsf{I}_{total}.$ 

 $V_{a,g4} = 25 \text{ kV}; V_f = 6,3 \text{ V}; V_{g3}$  adjusted for optimum focus. Raster size = 244 x 186 mm<sup>2</sup>.



# M37-118X

Luminance at the centre of the screen as a function of  $I_{total}$ .

 $V_{a,g4} = 25 \text{ kV}$ ;  $V_f = 6,3 \text{ V}$ ;  $V_{g3}$  adjusted for optimum focus.

Raster size =  $244 \times 186 \text{ mm}^2$ .



# DEGAUSSING

The display tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be automatically degaussed by a coil mounted on the cone of the display tube as shown in Fig. 21.



Fig. 21 Position of degaussing coil on the display tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased. In the steady state, no significant m.m.f. should remain in the coil ( $\leq 0.6$  ampere-turns).

If single-phase power rectification is used, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

An example of a degaussing circuit and coil data for various mains voltage are given below.





### Data of degaussing coil

|                          | 110 to 120 V (a.c.) | 220 V (a.c.)   |
|--------------------------|---------------------|----------------|
| Circumference            | 90 cm               | 90 cm          |
| Number of turns          | 70                  | 120            |
| Copper-wire diameter     | 0,45 mm             | 0,3 mm         |
| Resistance               | 6,7 Ω               | 25,9 Ω         |
| Catalogue number of dual |                     |                |
| PTC thermistor           | 8222 298 73091      | 2322 662 98009 |

# CONVERGENCE AND RASTER SPECIFICATION

The maximum misconvergence after 20 min operation is given in Table 1 and Fig. 23.

Test conditions (all voltages are measured with respect to grid 1)

| Heater voltage      | Vf              | 6,3 V                                                                                                                                         |
|---------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Grid 2 voltage      | V <sub>g2</sub> | 525 V                                                                                                                                         |
| Grid 3 voltage      | Vg3             | to be adjusted for focus at half east or half west, using cross-hatch pattern or characters H, at anode current of 300 $\mu A$ (peak) per gun |
| Anode voltage       | Va              | 25 kV                                                                                                                                         |
| Test pattern        |                 | cross-hatch pattern                                                                                                                           |
| Ambient temperature | Tamb            | 25 ± 5 °C                                                                                                                                     |
| Tube facing         |                 | East                                                                                                                                          |

# Notes

- Misconvergence is the distance between centres of the red, green, blue lines at the screen using rectangular co-ordinates.
- 2. Anode and/or focusing voltage and terrestrial magnetism affects the static confergence performance. Therefore small readjustments of the minipole magnets (see Fig. 4a) may be necessary.

| Table 1 | Maximum | misconvergence | after 20 | min operation |
|---------|---------|----------------|----------|---------------|
|---------|---------|----------------|----------|---------------|

| location (see Fig. 23) | type of error                        | max. error between<br>any colour |
|------------------------|--------------------------------------|----------------------------------|
| centre                 |                                      | 0,15 mm                          |
| area A                 | the barizontal or vertical direction | 0,30 mm                          |
| area B                 |                                      | 0,40 mm                          |



Fig. 23 Convergence test areas.

# Mullard

### Raster centring horizontal vertical

Raster rotation

max. 4 mm max. 4 mm

max. 0,4º (Fig. 24)



Fig. 24 Raster rotation.

Pattern distortion, measured without east-west and north-south correction

| Pin cushion distortion<br>east-west      | $\frac{2(H1 + H2)}{B1 + B2} \times 100\% \text{ (Fig. 22)}$ | max. 8,0%   |
|------------------------------------------|-------------------------------------------------------------|-------------|
| north-south                              | $\frac{2(V1 + V2)}{A1 + A2} \times 100\% \text{ (Fig. 22)}$ | max. 1,0%   |
| Max. pin-cushion distortion at each side |                                                             |             |
| east-west                                | H1 or H2 (Fig. 22)                                          | max. 6,5 mm |
| north-south                              | V1 or V2 (Fig. 22)                                          | max. 1,5 mm |
| Parallelogram                            | P1 or P2 (Fig. 23)                                          | max. 2,5 mm |





Fig. 25 A1, A2 = 186 mm; B1, B2 = 244 mm.

Fig. 26.

February 1987

22

# Mullard

M87-1311/TK





# DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

# HIGH RESOLUTION COLOUR DISPLAY TUBE ASSEMBLIES

- 90<sup>o</sup> deflection angle
- 37 cm (14 in) face diagonal
- 29,1 mm neck diameter
- High resolution obtained by 0,29 mm dot triplet pitch and high-resolution in-line electron guns
- Hexagonal dot arrangement
- Black matrix screen for high brightness and contrast
- Internal magneto-static beam alignment
- Non-glare faceplate
- Internal magnetic shield
- Rimband type implosion protection
- Supplied as a pre-aligned, self-converging tube-coil assembly; dynamic convergence is not required
- M37-103X/N/1000 series: assembly with display tube with clear face glass M37-108X/N/1000 series: assembly with display tube with tinted face glass

# QUICK REFERENCE DATA

| Deflection angle                                  | 900                  |
|---------------------------------------------------|----------------------|
| Face diagonal                                     | 37 cm (14 in)        |
| Overall length                                    | 342 mm               |
| Neck diameter                                     | 29,1 mm              |
| Dot triplet pitch                                 | 0,29 mm (0,011 in)   |
| Resolution: minimum number of displayable pixels* | 800 × 600            |
| Heating                                           | 6,3 V/685 mA         |
| Focusing voltage                                  | 28% of anode voltage |
|                                                   |                      |

\* Pixel = picture element.



# ELECTRON-OPTICAL DATA

| Electron gun system           |  |
|-------------------------------|--|
| Focusing method               |  |
| Focus lens                    |  |
| Convergence method            |  |
| Deflection method             |  |
| Deflection angles<br>diagonal |  |
| horizontal<br>vertical        |  |

# ELECTRICAL DATA

# Tube

| Capacitances<br>anode to external                                    |                                                     |                             |
|----------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|
| conductive coating including rimband                                 | C <sub>a(m + m')</sub>                              | max. 1300 pF<br>min. 800 pF |
| grid 1 of any gun to all other electrodes                            | C <sub>g1</sub>                                     | 17 pF                       |
| cathodes of all guns, connected in parallel, to all other electrodes | Ck                                                  | 15 pF                       |
| cathode of any gun to all other electrodes                           | C <sub>kR</sub> , C <sub>kG</sub> , C <sub>kB</sub> | 5 pF                        |
| focusing electrode to all other electrodes                           | C <sub>g3</sub>                                     | 6 pF                        |
| Heating                                                              |                                                     | indirect by a.c. or d.c.    |
| heater voltage                                                       | Vf                                                  | 6,3 V                       |
| heater current                                                       | lf                                                  | 685 mA                      |
|                                                                      |                                                     |                             |

unitized in-line electrostatic bi-potential magnetic magnetic

approx. 90<sup>0</sup> approx. 78<sup>0</sup> approx. 60<sup>0</sup>

# Deflection unit

|                                                            |                    | M37-103X/N/followed by |            |            |            |             |
|------------------------------------------------------------|--------------------|------------------------|------------|------------|------------|-------------|
| parameter                                                  | unit               | 1010                   | 1020       | 1030       | 1040       | 1050        |
| Line deflection coils, Fig. 1<br>inductance<br>resistance  | mH ± 4%<br>Ω ± 10% | 2,4<br>3               | 1,2<br>1,5 | 0,6<br>0,8 | 0,3<br>0,4 | 0,15<br>0,2 |
| Line deflection current,<br>edge to edge, at 25 kV         | А (р-р)            | 2,60                   | 3,62       | 5,12       | 7,24       | 10,24       |
| Field deflection coils, Fig. 2<br>inductance<br>resistance | mH ± 10%<br>Ω ± 7% | 6,5<br>6,5             | 6,5<br>6,5 | 6,5<br>6,5 | 6,5<br>6,5 | 6,5<br>6,5  |
| Field deflection current,<br>edge to edge, at 25 kV        | A (p-p)            | 1,36                   | 1,36       | 1,36       | 1,36       | 1,36        |

Maximum permissible voltage between line and field coils between field coils and core

Insulation resistance

between line and field coils, at 1 kV (d.c.) between line coil and core clamping ring, at 500 V (d.c.) between field coil and core clamping ring, at 1000 V (d.c.)

Cross-talk

3000 V (d.c.) 300 V (d.c.)

500 MΩ

**30** MΩ

100 MΩ

a voltage of 1 V, 15625 Hz applied to the line coils causes no more than 20 mV across the field coils



Fig. 1 Line coils. L is factory adjusted.





Fig. 2 Field coils. R is factory adjusted.

See Fig. 3 for location of terminals.



Fig. 3 Terminal location of deflection coils.

OPTICAL DATA Screen Screen finish Useful screen dimensions diagonal horizontal axis vertical axis area Recommended useful screen dimensions for alphanumeric display diagonal horizontal axis vertical axis Phosphor red green blue Phosphor colour co-ordinates\* red green blue Dot arrangement Spacing between centres of adjacent dot triplets Light transmission of face glass at centre M37-103X/N/1000 series M37-108X/N/1000 series

Minimum number of displayable pixels\*\*

metal-backed phosphor dot triplets; black matrix non-glare (direct etch)

min. 335,4 mm min. 280,8 mm min. 210,6 mm min. 580 cm<sup>2</sup>

307 mm 244 mm 186 mm

rare earth sulphide type sulphide type

x = 0,635; y = 0,340 x = 0,315; y = 0,600 x = 0,150; y = 0,060 hexagonal approx. 0,29 mm (0,011 in)

approx. 85% approx. 60% 800 x 600

\* Other phosphors available to special order.

\*\* Measuring conditions: anode current per gun (peak value) = 300 μA; pulse width equal to the dot pitch; screen area used = 244 mm x 186 mm.

Mullard

January 1984

| MECHANICAL DAT | A (see also | the figures on | the following pages) |
|----------------|-------------|----------------|----------------------|
|----------------|-------------|----------------|----------------------|

| Overall length                                                                            | max. 354 mm                                        |
|-------------------------------------------------------------------------------------------|----------------------------------------------------|
| Neck diameter                                                                             | 29,1 mm                                            |
| Greatest dimensions of tube face (excluding mounting lugs)<br>diagonal<br>width<br>height | 366,4 ± 1,6 mm<br>315,4 ± 1,6 mm<br>246,4 ± 1,6 mm |
| Implosion protection                                                                      | shrink type (UL, CSA and<br>VDE approved)          |
| Anode contact designation                                                                 | JEDEC J1-21; IEC 67-111-2                          |
| Base designation                                                                          | 10-pin base JEDEC B10-277                          |
| Basing designation                                                                        | see Fig. 10                                        |
| Mass                                                                                      | approx. 6,4 kg                                     |
| Mounting position                                                                         | anode contact on top                               |
|                                                                                           |                                                    |

# Notes to outline drawings on the following pages

- 1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max. 1 mm.
- 4. Minimum space to be reserved for mounting lug.
- The position of the mounting screw in the cabinet must be within a circle of 9,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 311,4 mm x 243,2 mm.
- 6. Co-ordinates for radius R = 11,6 mm: x = 126,98 mm, y = 90,76 mm.
- 7. Maximum dimensions in plane of lugs.
- The socket for this base should not be rigidly mounted: it should have flexible leads and be allowed to move freely. The bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 50 mm.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate 3,2 mm beyond the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

# MECHANICAL DATA (continued)

Dimensions in mm







January 1984





Fig. 6.







Mullard





Fig. 9.

January 1984

High resolution colour display tube assemblies

# M37-103X/N/1000 M37-108X/N/1000 SERIES

10-pin base; JEDEC B10-277





Fig. 11.

0

Mullard

January 1984

# **RECOMMENDED OPERATING CONDITIONS** (cathode drive)

The voltages are specified with respect to grid 1.

Anode voltage

Grid 3 (focusing electrode) voltage

Grid 2 voltage

Anode current of each gun (peak)

Luminance at the centre of the screen L\*

| √a,g4     | 25 kV         |
|-----------|---------------|
| √g3       | 6,6 to 7,5 kV |
| √g2       | see Fig. 12   |
| ар        | 300 µA        |
| o be esta | ablished      |





Grid 2 voltage (V<sub>g2</sub>) adjusted for highest gun spot cut-off voltage V<sub>k</sub> = 105 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage.

V<sub>g2</sub> range 300 to 800 V

Vk range 85 to 105 V

Adjustment procedure:

Set the cathode voltage (V<sub>k</sub>) for each gun at 105 V; increase the grid 2 voltage (V<sub>g2</sub>) from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

\* Tube adjusted for a focused raster with a current density of 0,4 µA/cm<sup>2</sup> of the respective colour.

10

| EQUIPMENT DESIGN VALUES (each g                                                                         | un if ap            | plicable)              |                         |                    |                        |                         |                    |
|---------------------------------------------------------------------------------------------------------|---------------------|------------------------|-------------------------|--------------------|------------------------|-------------------------|--------------------|
| The values are valid for anode voltages be<br>The voltages are specified with respect to                | etween 2<br>grid 1. | 20 and 27              | ,5 kV.                  |                    |                        |                         |                    |
| Grid 3 (focusing electrode) voltage                                                                     |                     | Vg3                    |                         | 26,6 to 2          | 9,8% of an             | ode volta               | ige                |
| Grid 2 voltage for visual extinction of focused spot ( $V_k$ = max. 105 V)                              |                     | V <sub>g2</sub> and    | V <sub>k</sub>          | see Fig. 1         | 2                      |                         |                    |
| Difference in cut-off voltages between guns in any tube                                                 |                     | $\Delta V_k$           |                         | lowest va          | lue≥80%                | of highes               | t value            |
| Cathode drive characteristic                                                                            |                     |                        |                         | see Fig. 1         | 3                      |                         |                    |
| Grid 3 (focusing electrode) current                                                                     |                     | Iq3                    |                         | -5 to + 5          | ōμA                    |                         |                    |
| Grid 2 current                                                                                          |                     | I <sub>g2</sub>        |                         | -5 to + §          | ōμA                    |                         |                    |
| Grid 1 current at $V_k$ = 100 V                                                                         |                     | lg1                    |                         | -5 to + §          | ōμA                    |                         |                    |
|                                                                                                         |                     | to produ               | ce white,               | CIE co-or          | dinates                |                         |                    |
|                                                                                                         |                     | x = 0,313<br>y = 0,329 | 3                       |                    | x = 0,281<br>y = 0,311 |                         |                    |
| Percentage of total anode current<br>supplied by each gun (typical)<br>red gun<br>green gun<br>blue gun |                     |                        | 39,0%<br>35,2%<br>25,8% |                    |                        | 28,7%<br>38,6%<br>32,7% |                    |
| Ratio of anode currents<br>red gun to green gun<br>red gun to blue gun                                  |                     | min.<br>0,8<br>1,1     | av.<br>1,1<br>1,5       | max.<br>1,4<br>1,9 | min.<br>0,5<br>0,7     | av.<br>0,7<br>0,9       | max.<br>0,9<br>1,2 |



0,5

0,7

1,0

Fig. 13 Typical cathode drive characteristics at spot cut-off voltages of 85 V (curve a) and 105 V (curve b).

 $V_{f} = 6,3 V;$  $V_{a,g4} = 25 \, kV;$ V<sub>q3</sub> adjusted for focus.

blue gun to green gun

# Mullard

0,6

0,8

1,1

# LIMTING VALUES (each gun if applicable)

# Tube

Design maximum rating system unless otherwise stated. The voltages are specified with respect to grid 1.

| Anode voitage                                                                          | V <sub>a,g4</sub>                                                            | max.<br>min.                 | 27,5                   | kV               | note 3           | 2 |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|------------------------|------------------|------------------|---|
| Anode current for each gun<br>peak<br>average                                          | I <sub>ap</sub><br>I <sub>a</sub>                                            | max.<br>max.                 | 400<br>200             | μΑ<br>μΑ         |                  |   |
| Long term average anode current for three guns                                         |                                                                              | to be                        | establis               | hed              |                  |   |
| Grid 3 (focusing electrode) voltage                                                    | Vg3                                                                          | max.                         | 10                     | kV               |                  |   |
| Grid 2 voitage, peak                                                                   | V <sub>g2p</sub>                                                             | max.                         | 1000                   | V                |                  |   |
| Cathode voltage<br>positive<br>positive operating cut-off<br>negative<br>negative peak | V <sub>k</sub><br>V <sub>k</sub><br>-V <sub>k</sub><br>-V <sub>kp</sub>      | max.<br>max.<br>max.<br>max. | 400<br>200<br>0<br>2   | V<br>V<br>V<br>V |                  |   |
| Cathode to heater voltage<br>positive<br>positive peak<br>negative<br>negative peak    | V <sub>kf</sub><br>V <sub>kfp</sub><br>–V <sub>kf</sub><br>–V <sub>kfp</sub> | max.<br>max.<br>max.<br>max. | 275<br>300<br>0<br>200 | <pre></pre>      | note 1<br>note 1 |   |
| Heater voltage                                                                         | Vf                                                                           | max.<br>min.                 | 6,9<br>5,7             | v                | note 4           |   |
| Deflection unit                                                                        |                                                                              |                              |                        |                  |                  |   |
| Maximum operating temperature                                                          |                                                                              |                              | 95                     | oC               |                  |   |
| LIMITING CIRCUIT VALUES                                                                |                                                                              |                              |                        |                  |                  |   |
| Grid 3 circuit resistance                                                              | R <sub>g3</sub>                                                              | max.                         | 30                     | MΩ               |                  |   |
| Grid 1 to cathode circuit resistance (each gun)                                        | R <sub>g1k</sub>                                                             | max.                         | 0,75                   | MΩ               |                  |   |

1.1/

### Notes

- 1. Absolute Maximum rating system.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended first to make the necessary adjustments for normal operation.
- 3. Operation of the tube at lower voltages impairs the luminance and resolution.
- 4. For maximum cathode life, it is recommended that the heater supply be regulated at 6,0 V.

# FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV (1,5 x V<sub>q3</sub> max. at V<sub>a,q4</sub> = 25 kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k $\Omega$  without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.



Fig. 14.

# X-RADIATION LIMIT

Maximum anode voltage at which the X-radiation emitted will not exceed 0,5 mR/h at an anode current of 300  $\mu$ A

| entire tube     | 31 kV* |
|-----------------|--------|
| face-plate only | 33 kV  |

# Warning:

If the value for the tube face only is used as design criterion, adequate shielding must be provided in the monitor for the anode contact and/or certain portions of the tube funnel and panel skirt to insure that the X-radiation from the monitor is attenuated to a value equal to or lower than that specified for the face of the tube.

Maximum voltage difference between anode and focus electrode at which the X-radiation will not exceed 0,5 mR/h

30 kV

### Warning:

If the voltage value above can be exceeded in the monitor additional attenuation of the X-radiation through the tube neck may be required.

The X-radiation emitted from this display tube, as measured in accordance with the procedure of JEDEC Publication No. 64D, will not exceed 0,5 mR/h throughout the useful tube life when operated within the 'Design maximum ratings'.

The tube should not be operated beyond its 'Design maximum ratings' stated above, but its X-radiation will not exceed 0,5 mR/h for anode voltage and current combinations given by the isoexposure-rate limits characteristics shown on the next page.

Operation above the values shown by the curve may result in failure of the monitor to comply with the Federal Performance Standard of the U.S. for Television Receivers, Section 1020. 10 of Part 1020 of Title 21, Code of Federal Regulation (PL90-602) as published in the Federal Register Volume 38, No. 198, Monday, October 15, 1973.

Maximum X-radiation as a function of anode voltage at 300  $\mu$ A anode current is shown by the curve on the next page. X-radiation at a constant anode voltage varies linearly with anode current.

\* This rating applies only if the anode connector used by the set maker provides the necessary attenuation to reduce the X-radiation from the anode contact by a factor equal to the difference between the anode button isoexposure-rate limit curve and the isoexposure-rate limit curve for the entire tube.





Fig. 16 X-radiation limit curve at a constant anode current of 300  $\mu$ A.





# WARNINGS

# X-radiation

Operation of this colour display tube under abnormal conditions which exceed the 0,5 mR/h iso-dose rate curve shown on the preceding page may produce soft X-rays which may constitute a health hazard on prolonged exposure at close range unless adequate external screening is provided. Precautions must therefore be exercised during servicing of monitors using this tube to ensure that the anode voltage and other tube voltages are adjusted to the recommended values so that the 'Design maximum ratings' are not exceeded.

### Tube replacement

This display tube incorporates integral X-radiation and implosion protection and must be replaced with a tube of the same type number or a recommended replacement to assure continued safety.

### Shock hazard

The high voltage at which the tube is operated may be very dangerous. The monitor should include safeguards to prevent the user from coming in contact with the high voltage. Extreme care should be taken in servicing or adjustment of any high-voltage circuit.

Caution must be exercised during the replacement or servicing of the display tube since a residual electrical charge may be held by the high-voltage capacitor formed by the external and internal conductive coatings of the display tube funnel. To remove any residual charge, short the anode contact button, located in the funnel of the tube, to the external conductive coating before handling the tube. Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

# **Tube handling**

Display tubes should be kept in the shipping box or similar protective container will just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.

The packing should incorporate sufficient cushioning so that under normal conditions of shipment or handling an impact acceleration of more than 35g is never applied to the tube.

16

# Mullard





Fig. 17 Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0,281, y = 0,311. Exact shape of the peaks depends on the resolution of the measuring apparatus.

| Colour co-ordinates: | x     | У     |
|----------------------|-------|-------|
| red                  | 0,635 | 0,340 |
| green                | 0,315 | 0,600 |
| blue                 | 0,150 | 0,060 |

# DEGAUSSING

The display tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be automatically degaussed by a coil mounted on the cone of the picture tube as shown in Fig. 18.



Fig. 18 Position of degaussing coil on the display tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased. In the steady state, no significant m.m.f. should remain in the coil ( $\leq 0.6$  ampere-turns).

If single-phase power rectification is used, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

An example of a degaussing circuit and coil data for various mains voltage are given below.



Fig. 19 Degaussing circuit using dual PTC thermistor.

# Data of degaussing coil

|                          | 110 to 120 V (a.c.) | 220 V (a.c.)   |
|--------------------------|---------------------|----------------|
| Circumference            | 95 cm               | 90 cm          |
| Number of turns          | 70                  | 120            |
| Copper-wire diameter     | 0,45 mm             | 0,3 mm         |
| Resistance               | 6,7 Ω               | 25,9 Ω         |
| Catalogue number of dual |                     |                |
| PTC thermistor           | 2322 662 98013      | 2322 662 98009 |

# CONVERGENCE AND RASTER SPECIFICATION

The maximum misconvergence after 15 min operation is given in Table 1 and Fig. 20

Test conditions (all voltages are measured with respect to grid 1)

| Heater voltage      | Vf              | 6,3 V                                                                                                                                |
|---------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Grid 2 voltage      | V <sub>g2</sub> | 525 V                                                                                                                                |
| Grid 3 voltage      | V <sub>g3</sub> | to be adjusted for focus at screen centre, using cross-hatch pattern or characters H, at anode current of 300 $\mu A$ (peak) per gun |
| Anode voltage       | Va              | 25 kV                                                                                                                                |
| Test pattern        |                 | cross-hatch pattern                                                                                                                  |
| Ambient temperature | Tamb            | 25 ± 5 °C                                                                                                                            |

# Notes

- 1. Misconvergence is the distance between centres of the red, green, blue lines at the screen using rectangular co-ordinates.
- 2. Anode and/or focusing voltage and terrestrial magnetism affect the static convergence performance. Therefore small readjustments of the minipole magnets may be necessary.

Table 1 Maximum misconvergence after 15 min operation

| location (see Fig. 20) | type or error                            | max. error between<br>any colour |  |
|------------------------|------------------------------------------|----------------------------------|--|
| centre<br>area A       | red-green-blue line separation in either | 0,15 mm<br>0.30 mm               |  |
| area B                 | the horizontal or vertical direction     | 0,40 mm                          |  |



Fig. 20 Convergence test areas.



# Raster centring horizontal

vertical

Raster rotation

max. 5 mm max. 5 mm

max. 0,4º (Fig. 21)



Fig. 21 Raster rotation.

Pattern distortion, measured without east-west and north-south correction

| Pin cushion distortion<br>east-west                   | $\frac{2(H1 + H2)}{B1 + B2} \times 100\% \text{ (Fig. 22)}$ | max. 8,0%   |
|-------------------------------------------------------|-------------------------------------------------------------|-------------|
| north-south                                           | $\frac{2(V1 + V2)}{A1 + A2} \times 100\%$ (Fig. 22)         | max. 1,0%   |
| Max. pin-cushion distortion at each side<br>east-west | H1 or H2 (Fig. 22)                                          | max. 6,5 mm |
| north-south                                           | V1 or V2 (Fig. 22)                                          | max. 1,5 mm |
| Parallelogram                                         | P1 or P2 (Fig. 23)                                          | max. 2,5 mm |







Fig. 23.

Cathode-ray tubes

**Camera tubes** 

# DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

#### Supersedes June 1986 data

# FRAME TRANSFER SENSOR

### GENERAL DESCRIPTION

The NXA1011 frame transfer sensor is a solid state imaging device which produces two interlaced 294-line fields (including 6 lines for dark reference and testing) with an aspect ratio of 4:3.

The device is compatible with CCIR TV standards and has a 7,5 mm image diagonal matching the half-inch camera tube format.

# APPLICATIONS

- ENG cameras the high blue sensitivity and good horizontal resolution makes this sensor suitable for 3-chip ENG colour cameras
- Surveillance cameras solid state reliability, high resolution and sensitivity provide the quality to be an ideal successor for the Newvicon<sup>®</sup> or Ultricon<sup>®</sup> pick-up element
- Character and pattern recognition the excellent linearity and uniformity recommends this sensor as a first choice for these applications
- Robotics the small size, light-weight and mechanical ruggedness makes this sensor extremely suitable for all types of high resolution robot-vision applications
- Visual aids the low voltage and mechanical ruggedness of this device allows design of safe and reliable cameras for visual aids

### FEATURES

- Effective number of elements: 604 (horizontal) x 576 (vertical)
- Dark reference: 1 line per field for black clamping
- 100 x anti-blooming margin
- Gamma is 1
- · High sensitivity, low noise
- Freedom from lag, burn-in, geometrical distortion and microphonic noise

#### DEVICE ORGANIZATION

- · Frame transfer charge coupled device
- Unit cell size: 10 μm (horizontal) x 15,6 μm (vertical)
- Dummy elements: the first 5 elements of the 3 output registers are dummy elements
- On-chip high sensitivity output amplifier
- Image area: 6,0 mm (horizontal) x 4,5 mm (vertical)
- Chip size: 6,95 mm (horizontal) x 9,35 mm (vertical)

## FUNCTIONAL DESCRIPTION

The special electrode arrangement allows 26% of the photosensitive element to be free of polysilicon. This facilitates easy penetration of the blue light into the element to provide good blue sensitivity.

NXA1011

The layout of the sensor is shown in Fig. 1. It comprises 3 functional areas:

- a matrix of photosensitive elements and integration electrodes,
- a storage section,
- three BCCD read-out registers.

Figure 2 shows the transport process in the imaging and storage regions. At time  $t_0$ , the start of the first field read-out from the imaging region,  $\phi_3$  is low and the charge is concentrated beneath  $\phi_4$  to  $\phi_2$ . At  $t_1$ ,  $\phi_4$  goes low and the charge in each pixel concentrates beneath  $\phi_1$  and  $\phi_2$ . At  $t_2$ ,  $\phi_3$  goes high and the charge packets advance one gate electrode, spreading out beneath  $\phi_1$ ,  $\phi_2$  and the following electrode  $\phi_3$ . In the next step, at  $t_3$ ,  $\phi_1$  goes low compressing the charge packets beneath  $\phi_2$  and  $\phi_3$ , and at  $t_4$ ,  $\phi_4$  goes high allowing the charge packets again to advance one gate electrode. This process continues in both the imaging and storage region.

The sensor in the integration mode is shown in Fig. 3. The first field is generated when phases  $\phi_4$ ,  $\phi_1$  and  $\phi_2$  are high and  $\phi_3$  is low, Fig. 3(a),  $\phi_3$  effectively forms a potential barrier separating the pixels in the first field. The charges generated by incident light then integrate beneath  $\phi_4$  and  $\phi_2$ , centred on  $\phi_1$ . So each pixel extends vertically over four gate electrodes.

The potential distribution of the second field, and hence its position relative to the first field is shown in Fig. 3(b). The second field is always displaced by two gate electrodes relative to the first field, with its charge patterns centred on  $\phi_3$ , and with  $\phi_1$  forming the barrier between pixels, thus providing a perfectly interlaced frame structure.

# CAUTION

The image sensor is a MOS device which can be destroyed by static charging of the gates. Always store the device with short-circuiting clamps or on conductive foam plastic. When cleaning the glass window only use alcohol or acetone. Rub the window carefully and slowly. Dry rubbing of the window may cause static charges which can destroy the device.

# Mullard


2

# Mullard

U

Frame transfer sensor

NXA1011



Mullard

February 1987



#### PIN DESCRIPTION

| PIN NO.              | SYMBOL                                                                   | NAME AND FUNCTION                              |  |  |
|----------------------|--------------------------------------------------------------------------|------------------------------------------------|--|--|
| 1<br>2<br>3<br>4     | <ul> <li>φ2A</li> <li>φ4A</li> <li>φ1A</li> <li>φ3A</li> </ul>           | Vertical transfer clocks for image part        |  |  |
| 5                    | LS                                                                       | Light shield (Al. cover on storage part)       |  |  |
| 6                    | OG                                                                       | Output gate                                    |  |  |
| 7                    | RD                                                                       | Drain reset transistor                         |  |  |
| 8                    | N <sub>sub</sub>                                                         | N-substrate; supply voltage                    |  |  |
| 9                    | GND                                                                      | Ground                                         |  |  |
| 10                   | OT                                                                       | Output top                                     |  |  |
| 11                   | ОМ                                                                       | Output middle                                  |  |  |
| 12                   | OB                                                                       | Output bottom                                  |  |  |
| 13<br>14<br>15       | <sup>φ</sup> 3C<br><sup>φ</sup> 2C<br><sup>φ</sup> 1C                    | Horizontal transfer clock for output register  |  |  |
| 16<br>17             | TG1<br>TG2                                                               | Transfer gates                                 |  |  |
| 18                   | IG                                                                       | Input gate (test point for manufacturing)      |  |  |
| 19                   | IN                                                                       | Input diffusion (test point for manufacturing) |  |  |
| 20                   | P <sub>sub</sub>                                                         | P-substrate                                    |  |  |
| 21<br>22<br>23<br>24 | <sup>φ</sup> 2B<br><sup>φ</sup> 4B<br><sup>φ</sup> 3B<br><sup>φ</sup> 1B | Vertical transfer for storage<br>part          |  |  |

## February 1987

#### RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

| PARAMETER                           | SYMBOL               | MIN. | MAX. | UNIT |
|-------------------------------------|----------------------|------|------|------|
| Voltages with respect to Psub       |                      |      |      |      |
| RD                                  | V <sub>RD-PSUB</sub> | -0,5 | +25  | v    |
| IN                                  | VIN-PSUB             | -0,5 | +25  | v    |
| Voltages with respect to Nsub       |                      |      |      |      |
| RD                                  | V <sub>RD-NSUB</sub> | -10  | +0,5 | v    |
| IN                                  | VIN-NSUB             | -10  | +0,5 | V    |
| all other connections               |                      | -25  | +0,5 | v    |
| Current from one output             |                      | -    | 10   | mA   |
| Storage temperature range           | T <sub>stg</sub>     | -55  | +80  | °C   |
| Operating ambient temperature range | T <sub>amb</sub>     | -20  | +60  | °C   |

### DC CHARACTERISTICS at Tamb = 25 °C

| PARAMETER                                                                | SYMBOL                             | MIN. | TYP.              | MAX.              | UNIT |
|--------------------------------------------------------------------------|------------------------------------|------|-------------------|-------------------|------|
| Voltage at LS (note 1)                                                   | V <sub>LS</sub>                    | _    | V <sub>Nsub</sub> | -                 | v    |
| Voltage at OG (note 2)                                                   | V <sub>OG</sub>                    | 2    | -                 | 10                | V    |
| Voltage at RD; (note 2)<br>current to sensor: $I < 1 \mu A$              | V <sub>RD</sub>                    | 10   | -                 | V <sub>Nsub</sub> | v    |
| Voltage at N <sub>sub</sub> ; (note 2) $I < 10 \text{ mA}$               | V <sub>Nsub</sub>                  | 15   | 20                | 22                | v    |
| Voltage difference between $V_{Nsub}$ and $V_{RD}$                       | V <sub>Nsub</sub> -V <sub>RD</sub> | -    | -                 | 7                 | v    |
| Voltage at IG                                                            | V <sub>IG</sub>                    | -    | GND               |                   | V    |
| DC level of output voltage<br>at OT, OM, OB (notes 3 and 4)              | V <sub>OT; OM; OB</sub>            | 6    | -                 | 15                | V    |
| Voltage at P <sub>sub</sub> ; (note 2)<br>current from sensor: I < 50 μA | V <sub>Psub</sub>                  | 0    | -                 | 5                 | v    |
| Voltage at IN                                                            | V <sub>IN</sub>                    | -    | V <sub>Nsub</sub> | -                 | V    |
| Power dissipation                                                        | Р                                  | -    | 80                | 150               | mW   |
| Leakage current of gates                                                 | Il                                 | -    | -                 | 10                | μA   |

#### Notes

DEVELOPMENT DATA

- 1. The lightshield should be connected to  $V_{\rm Nsub}$  (ot to GND). 2. These values must be adjusted to the optimum operating point within the given range.
- 3. Measured with output buffer. See Fig. 5.
- 4. See Fig. 16.



6

# Mullard

5

| CLOCK CHARACTERISTICS (n | note | 1) |
|--------------------------|------|----|
|--------------------------|------|----|

| PARAMETER                                                                                                                                                                                                                                |                                          | SYMBOL                                                                                                                                                                                                                                                                                              | MIN.                                                            | ТҮР.                                                               | MAX.                                                            | UNIT                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------|
| LOW levels                                                                                                                                                                                                                               |                                          |                                                                                                                                                                                                                                                                                                     |                                                                 |                                                                    |                                                                 |                                                                                    |
| $\phi_{nA}, \phi_{nB}$                                                                                                                                                                                                                   |                                          | V <sub>\$\phinksymbol{n}A/B\$</sub>                                                                                                                                                                                                                                                                 | -                                                               | GND                                                                | -                                                               | -                                                                                  |
| $\phi_{1C}, \phi_{2C}, \phi_{3C}$<br>( $\phi_{1CLOW} = \phi_{2CL}$<br>(note 2)                                                                                                                                                           | $OW = \phi_{3}CLOW$                      | v <sub>ønC</sub>                                                                                                                                                                                                                                                                                    | _                                                               | 0                                                                  | V <sub>Nsub</sub> -10                                           | v                                                                                  |
| TG1                                                                                                                                                                                                                                      | (note 2)                                 | V <sub>TG1</sub>                                                                                                                                                                                                                                                                                    | 0                                                               | -                                                                  | V <sub>Nsub</sub> -10                                           | v                                                                                  |
| TG2                                                                                                                                                                                                                                      | (note 2)                                 | V <sub>TG2</sub>                                                                                                                                                                                                                                                                                    | 0                                                               | -                                                                  | V <sub>Nsub</sub> -10                                           | v                                                                                  |
| Amplitudes                                                                                                                                                                                                                               |                                          |                                                                                                                                                                                                                                                                                                     |                                                                 |                                                                    |                                                                 |                                                                                    |
| $\phi_{nA}, \phi_{nB}, \phi_{nC}$                                                                                                                                                                                                        |                                          | $V_{\phi(p-p)}$                                                                                                                                                                                                                                                                                     | 9,75                                                            | 10                                                                 | 10,25                                                           | v                                                                                  |
| Timing (see Figs 6 a                                                                                                                                                                                                                     | and 7)                                   |                                                                                                                                                                                                                                                                                                     |                                                                 |                                                                    |                                                                 |                                                                                    |
| Horizontal clocks<br>clock frequency<br>rise time<br>fall time of $\phi_{1C}$ di<br>blanking<br>overlap time<br>Vertical clocks<br>clock frequency<br>rise time<br>fall time<br>overlap time<br>Transfer gates<br>rise time<br>fall time | (note 3)<br>uring horizontal<br>(note 4) | f <sub>c</sub><br>t <sub>rc</sub><br>t <sub>fc</sub><br>t<br>t <sub>fc</sub><br>t <sub>ihc</sub><br>t <sub>ilc</sub><br>f <sub>cv</sub><br>t <sub>rv</sub><br>t <sub>rv</sub><br>t <sub>fv</sub><br>t <sub>fv</sub><br>t <sub>ihv</sub><br>t <sub>ihv</sub><br>t <sub>ihv</sub><br>t <sub>ifv</sub> | -<br>20<br>20<br>-<br>10<br>5<br>-<br>-<br>100<br>100<br>-<br>- | 3,854<br><br>200<br><br><br>625<br>70<br>100<br><br>-<br>70<br>100 | -<br>40<br>40<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | MHz<br>ns<br>ns<br>ns<br>ns<br>kHz<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| Clock capacitance                                                                                                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                     |                                                                 |                                                                    |                                                                 |                                                                                    |
| Each clock phase<br>$\phi_{nA}, \phi_{nB}$<br>$\phi_{nC}, TG1, TG2$                                                                                                                                                                      |                                          | C <sub>\u03c6nA/B</sub><br>C <sub>\u03c6nC</sub> , CTG1/2                                                                                                                                                                                                                                           | -                                                               | _                                                                  | 3000<br>100                                                     | pF<br>pF                                                                           |
| Leakage current<br>of the clock conne                                                                                                                                                                                                    | ections                                  | Il                                                                                                                                                                                                                                                                                                  | -                                                               | _                                                                  | 10                                                              | μA                                                                                 |

#### Notes

1. Measured with output buffer. See Fig. 5.

2. These values must be adjusted to the optimum operating point within the given range.

3. Deviations from this frequency result in incorrect aspect ratio.

4. It is recommended to use the longer fall time of the  $\phi_{1C}$  pulse during the horizontal blanking period to avoid irregular vertical stripes.

| E  |
|----|
| O  |
| E  |
| Z  |
| ME |
| H  |
| 3  |
| Ξ  |
| È  |
| A  |

◄

U

#### ADJUSTMENT OF OPERATING LEVELS

A reasonable picture may be obtained by using the settings quoted in the NXA1011 Test Sheet. For optimum performance, fine adjustment of the sensors d.c. levels is essential. When carrying out this operation the following points should be considered.

- Vertical stripes in the picture are usually the result of charges being unevenly sorted into the three output registers. This can be influenced by offsets  $V_{\phi C}$ ,  $V_{TG1}$ ,  $V_{TG2}$  and  $V_{OG}$ .
- The anti-blooming performance of a sensor is influenced by its internal vertical potential gradient. This can be optimized by adjusting V<sub>Nsub</sub> and V<sub>Psub</sub>.

#### DRIVING PULSE WAVEFORMS

The specifications of the sensor are measured when the following clock pulses are applied (Figs 6 and 7). In principle the sensor can be operated with different clock pulses, e.g. different clock frequencies (overlap conditions have to be maintained).



8

## Mullard

U

DRIVING PULSE WAVEFORMS (continued)





Frame transfer sensor

NXA1011







## 0

Mullard

February 1987



4 February 1987

## Mullard

5



Mullard

February 1987

#### **OUTPUT CHARACTERISTICS** at T<sub>amb</sub> = 60 °C

| PARAMETER                                                                                                  | SYMBOL                                                   | MIN. | TYP. | MAX.                                           | UNIT |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------|------|------------------------------------------------|------|
| Load capacitance                                                                                           | CL                                                       | -    |      | 10                                             | pF   |
| Output signal voltage at standard<br>illumination (peak-to-peak value)<br>(S/N typ. 50 dB) (notes 1 and 2) | V <sub>OTS</sub><br>V <sub>OMS</sub><br>V <sub>OBS</sub> | 65   | _    | 130                                            | mV   |
| Signal to noise ratio at standard illumination (notes 1, 2 and 3)                                          | S/N                                                      | -    | 50   | -                                              | dB   |
| Output signal voltage at saturation<br>(peak-to-peak value) (notes 2 and 4)                                | V <sub>Osat</sub>                                        | 250  | 400  | -                                              | mV   |
| Clock cross-talk to output<br>(peak-to-peak value)                                                         | V <sub>OCLK</sub>                                        | -    | -    | 0,2                                            | v    |
| Maximum illumination on the sensor<br>without blooming (note 5)                                            | EB                                                       | 1000 | -    | -                                              | lx   |
| Transport inefficiency<br>horizontal one step<br>vertical one step                                         | $\epsilon_{\rm H}$                                       | _    | _    | 8,5 x 10 <sup>-5</sup><br>5 x 10 <sup>-5</sup> |      |
| Dark current                                                                                               | ID                                                       | -    | _    | 5                                              | nA   |
| Smear (note 6)                                                                                             |                                                          |      |      |                                                | %    |

#### Notes

1. 5 Lx on the sensor, colour temperature of light source 3200 K, Hoya-IR-filter C500S, 1 mm is used.

- 2. Measured with output buffer.
- 3. 200 kHz to 5 MHz, weighted,  $T_{amb} = 25 \ ^{\circ}C$
- 4. Maximum usable range of illumination: 85% of saturation level.
- 5. See 'Definition of blooming'.
- 6. See 'Definition of smear'.



#### DEFINITION OF SMEAR

During the field transport time the complete field is shifted over the image section. So each pixel of one column is illuminated by all the other pixels of the column for a short time. Therefore a bright spot makes a bright vertical stripe on the image. This effect is called smear. The brightness of the stripe depends on the height of the spot and on the illumination of the spot.

It is defined by the equation:

 $V_{smear} = \frac{t_{field \ transport}}{t_{integration}} x \frac{h}{H} x \frac{E}{E_{sat}} x \ V_{sat}$ 

Where:

Vsmear = Additional output voltage due to smear tfield transport = 0,47 ms = 19.5 mstintegration = Height of bright spot h H = Height of the complete image E = Illumination of the spot Esat

= Saturation illumination

Vsat = Output voltage at saturation

Example:

Spot height is 10% of the height.

Spot illumination is 100% of saturation.

$$V_{smear} = \frac{0.47}{19.5} \times 0.1 \times 1 \times V_{sat} = 0.0024 \times V_{sat}$$

#### DEFINITION OF BLOOMING

When part of the image section (spot) is illuminated above saturation level and with the rest of the image dark, at a certain level of overexposure (1000 1x for the NXA1011), the area of the spot increases irregularly. This effect is called blooming.

### PICTURE ELEMENT DEFECTS

#### picture quality at Tamb = 60 °C

| GRADE | PIXEL<br>DEFECTS<br>(note 1) | CLUSTERS<br>(note 2) | COLUMN<br>DEFECTS<br>(note 3) |
|-------|------------------------------|----------------------|-------------------------------|
| 01    | 0                            | 0                    | 0                             |
| 02    | 2                            | 0                    | 0                             |
| 03    | 10                           | 2                    | 0                             |
| 04    | 35                           | 5                    | 2                             |

#### Notes

- 1. A picture element is considered defect, if its signal deviates more than ±10% from the mean signal of the neighbouring picture element at standard illumination.
- 2. A cluster is a pair of two defect pixels at a distance of less than 3% of the picture height. The sum of pixel defects and clustered pixel defects does not exceed the number of permitted pixel defects.
- 3. If more than two pixel defects occur in one column. this is considered a column defect. Additionally the indicated number of defect pixels is allowed.

| NXA <sup>·</sup> | 1011 |
|------------------|------|
|------------------|------|

#### **OUTPUT SIGNAL**

The output signal is a pulse sequence with a d.c. offset. The HIGH level of the output pulses, dependent upon the d.c. adjustments, varies between 8 and 12 volts. The LOW levels depend upon the signal voltage, itself a function of the intensity of the light falling on the sensor, and is between 1,0 and 0,2 volts below the HIGH level. These pulses contain the video information and need further processing to be converted into a signal suitable for use in standard video circuitry.



## Mullard

5

#### MECHANICAL PARAMETERS

The sensor is encapsulated in a 24-lead dual in-line ceramic package with a high-quality glass viewing window on the top side for admittance of light to the sensor.



#### Notes to Fig. 17

- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Line B is the connection line between pins 13 and 24. Pins 14 to 23 are not necessarily exactly on this line.
- These two dimensions are measured at the centre-line of the package.

#### GENERAL DIMENSIONS (See Fig. 17)

| Chip thickness                                           | 525 ± 15 μm         |
|----------------------------------------------------------|---------------------|
| Cover glass thickness                                    | 0,55 ± 0,05 mm      |
| Thickness of glue layer between sensor and cavity bottom | $80 \pm 30 \ \mu m$ |
| Refractive index                                         | 1,5                 |
| Transmission (400-700 nm)                                | 90%                 |
| Sensor is filled with dry air.                           |                     |

SOLDERING

#### 1. By hand

Apply the soldering iron below the seating plane (not more than 2 mm above it). If its temperature is below 300  $^{\circ}$ C it must not be in contact for more than 10 seconds; if between 300  $^{\circ}$ C and 400  $^{\circ}$ C, for not more than 5 seconds.

#### 2. By dip or Wave

The maximum permissable temperature of the solder is  $260 \,^{\circ}$ C, this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted up to the seating plane but the temperature of the ceramic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

#### 3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

## Mullard

U

#### APPLICATION INFORMATION

Figure 18 shows a circuit for providing the pulse sequences needed to drive the sensor. A SAA1043 sync-pulse generator provides the three TV standards, namely PAL, SECAM and NTSC. These include vertical and horizontal blanking, and black-level clamping. It also provides other signals essential for tv camera operation and can be triggered externally for operation with, for example, a VCR or computer. The sync-pulse generator drives a SAD1019 multi-norm pulse-pattern generator (MNPPG) developed specifically for the image sensors. It provides all the clock signals except the pulses for the horizontal read-out registers. Its use avoids the need to develop complex circuitry for driving the NXA1011. Fast clock pulses for the three horizontal read-out registers are generated by a pixel generator TDA4302, delivering three 3,85 MHz pulse trains with a 120° phase difference between them. The output levels from the MNPPG and the pixel generator are too low to drive the shift registers directly. Additional driver ICs are therefore needed to boost the signals i.e. for the pixel generator one TDA4305 and, for the MNPPG, two TDA4301 ICs. During horizontal blanking, the pixel generator is inhibited and slower pulses, derived from the MNPPG, are applied to the pixel generator output and, then, via the TDA4305, to the transfer gates and horizontal gate electrodes to sort the charge packets into the three horizontal read-out registers.

More detailed information is available on request.



Barren a

he should be





This data sheet contains advance information and specifications are subject to change without notice.

## NXA1021

#### Supersedes June 1986 data

### FRAME TRANSFER SENSOR

#### FRAME TRANSFER SENSOR

#### GENERAL DESCRIPTION

The NXA1021 frame transfer sensor is a solid state imaging device which produces two interlaced 294-line fields (including 6 lines for dark reference and testing) with an aspect ratio of 4:3. The sensor is equipped with an on-chip colour stripe filter.

The device is compatible with PAL and SECAM TV standards and has a 7,5 mm image diagonal matching the half-inch camera tube format.

#### APPLICATIONS

- Consumer entertainment cameras
- Surveillance cameras solid state reliability, high resolution and sensitivity provide the quality to be an ideal successor for your stripe filter camera tube
- Visual aids the low voltage and mechanical ruggedness of this device allows design of safe and reliable cameras for visual aids
- Slide and film scanners for consumer applications

#### FEATURES

- Effective number of elements: 604 (horizontal) x 576 (vertical)
- · Cyan, green, yellow and stripe filter on the chip
- Dark reference: 1 line per field for black clamping
- 100 x anti-blooming margin
- Gamma is 1
- High sensitivity, low noise
- Freedom from lag, burn-in, geometrical distortion and microphonic noise

#### **DEVICE ORGANIZATION**

- Frame transfer charge coupled device
- Unit cell size: 10 μm (horizontal) x 15,6 μm (vertical)
- · Separate outputs for the cyan, green, and yellow channels
- Dummy elements: the first 5 elements of the 3 output registers are dummy elements
- On-chip high sensitivity output amplifier
- Image area: 6,0 mm (horizontal) x 4,5 mm (vertical)
- Chip size: 6,95 mm (horizontal) x 9,35 mm (vertical)

#### FUNCTIONAL DESCRIPTION

The special electrode arrangement allows 26% of the photosensitive element to be free of polysilicon. This facilitates easy penetration of the blue light into the element to provide good blue sensitivity.

The layout of the sensor is shown in Fig. 1. It comprises 3 functional areas:

- a matrix of photosensitive elements and integration electrodes,
- a storage section,
- three BCCD read-out registers.

Figure 2 shows the transport process in the imaging and storage regions. At time  $t_0$ , the start of the first field read-out from the imaging region,  $\phi_3$  is low and the charge is concentrated beneath  $\phi_4$  to  $\phi_2$ . At  $t_1$ ,  $\phi_4$  goes low and the charge in each pixel concentrates beneath  $\phi_1$  and  $\phi_2$ . At  $t_2$ ,  $\phi_3$  goes high and the charge packets advance one gate electrode, spreading out beneath  $\phi_1$ ,  $\phi_2$  and the following electrode  $\phi_3$ . In the next step, at  $t_3$ ,  $\phi_1$  goes low compressing the charge packets beneath  $\phi_2$  and  $\phi_3$ , and at  $t_4$ ,  $\phi_4$  goes high allowing the charge packets again to advance one gate electrode. This process continues in both the imaging and storage regions until all the charge packets have transferred to the storage region.

The sensor in the integration mode is shown in Fig. 3. The first field is generated when phases  $\phi_4$ ,  $\phi_1$  and  $\phi_2$  are high and  $\phi_3$  is low, Fig. 3(a).  $\phi_3$  effectively forms a potential barrier separating the pixels in the first field. The charges generated by incident light then integrate beneath  $\phi_4$  and  $\phi_2$ , centred on  $\phi_1$ . So each pixel extends vertically over four gate electrodes.

The potential distribution of the second field, and hence its position relative to the first field is shown in Fig. 3(b). The second field is always displaced by two gate electrodes relative to the first field, with its charge patterns centred on  $\phi_3$ , and with  $\phi_1$  forming the barrier between pixels, thus providing a perfectly interlaced frame structure.

#### CAUTION

The image sensor is a MOS device which can be destroyed by static charging of the gates. Always store the device with short-circuiting slamps or on conductive foam plastic. When cleaning the glass window only use alcohol or acetone. Rub the window carefully and slowly. Dry rubbing of the window may cause static charges which can destroy the device.

## Mullard

orange binder, tab 5



2

## Mullard

じ



Mullard

February 1987



Fig. 4 Pin configuration.

#### PIN DESCRIPTION

| PIN NO.                           | SYMBOL                   | NAME AND FUNCTION                              |  |  |  |
|-----------------------------------|--------------------------|------------------------------------------------|--|--|--|
| 1<br>2<br>3<br>4                  | φ2A<br>φ4A<br>φ1A<br>φ3A | Vertical transfer clocks for image part        |  |  |  |
| 5                                 | LS                       | Light shield (Al. cover on storage part)       |  |  |  |
| 6                                 | OG                       | Output gate                                    |  |  |  |
| 7                                 | RD                       | Drain reset transistor                         |  |  |  |
| 8                                 | Nsub                     | N-substrate; supply voltage                    |  |  |  |
| 9                                 | GND                      | Ground                                         |  |  |  |
| 10                                | OT                       | Output top (cyan)                              |  |  |  |
| 11                                | OM                       | Output middle (green)                          |  |  |  |
| 12                                | OB                       | Output bottom (yellow)                         |  |  |  |
| 13<br>14<br>15                    | Ф3С<br>Ф2С<br>Ф1С        | Horizontal transfer clock for output register  |  |  |  |
| 16<br>17                          | TG1<br>TG2               | Transfer gate                                  |  |  |  |
| 18                                | IG                       | Input gate (test point for manufacturing)      |  |  |  |
| 19                                | IN                       | Input diffusion (test point for manufacturing) |  |  |  |
| 20                                | P <sub>sub</sub>         | P-substrate                                    |  |  |  |
| 21 <sup>°</sup><br>22<br>23<br>24 | φ2B<br>φ4B<br>φ3B<br>φ1B | Vertical transfer clocks for storage part      |  |  |  |

4

## Mullard

J

#### RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

| PARAMETER                                                                      | SYMBOL                               | MIN.              | MAX.                 | UNIT        |
|--------------------------------------------------------------------------------|--------------------------------------|-------------------|----------------------|-------------|
| Voltages with respect to P <sub>sub</sub><br>RD<br>IN                          | VRD-PSUB<br>VIN-PSUB                 | 0,5<br>0,5        | +25<br>+25           | v<br>v      |
| Voltages with respect to N <sub>sub</sub><br>RD<br>IN<br>all other connections | VRD-NSUB<br>VIN-NSUB                 | -10<br>-10<br>-25 | +0,5<br>+0,5<br>+0,5 | V<br>V<br>V |
| Current from one output                                                        |                                      |                   | 10                   | mA          |
| Storage temperature range<br>Operating ambient temperature range               | T <sub>stg</sub><br>T <sub>amb</sub> | -30<br>-20        | +80<br>+60           | °C<br>°C    |

### DC CHARACTERISTICS at Tamb = 25 °C

| PARAMETER                                                              | SYMBOL                             | MIN. | TYP.              | MAX.              | UNIT |
|------------------------------------------------------------------------|------------------------------------|------|-------------------|-------------------|------|
| Voltage at LS (note 1)                                                 | VLS                                | _    | V <sub>Nsub</sub> | -                 | v    |
| Voltage at QG (note 2)                                                 | VOG                                | 2    | -                 | 10                | v    |
| Voltage at RD; (note 2)<br>current to sensor: $I < 1 \mu A$            | V <sub>RD</sub>                    | 10   | _                 | V <sub>Nsub</sub> | v    |
| Voltage at N <sub>sub</sub> ; (note 2) $I < 10 \text{ mA}$             | V <sub>Nsub</sub>                  | 15   | 20                | 22                | v    |
| Voltage difference between $V_{Nsub}$ and $V_{RD}$                     | V <sub>Nsub</sub> -V <sub>RD</sub> | _    | -                 | 7                 | v    |
| Voltage at IG                                                          | VIG                                | -    | GND               | _                 | v    |
| DC level of output voltage<br>at OT, OM, OB (notes 3 and 4)            | VOT;OM;OB                          | 6    | -                 | 15                | V    |
| Voltage at $P_{sub}$ ; (note 2)<br>current from sensor: I < 50 $\mu$ A | VPsub                              | 0    | -                 | 5                 | v    |
| Voltage at IN                                                          | VIN                                | -    | V <sub>Nsub</sub> | -                 | v    |
| Power dissipation                                                      | Р                                  | -    | 80                | 150               | mW   |
| Leakage current of gates                                               | Il                                 | -    | -                 | 10                | μA   |

#### Notes

1. The lightshield should be connected to  $V_{Nsub}$  (or to GND).

2. These values must be adjusted to the optimum operating point within the given range.

3. Measured with output buffer. See Fig. 5.

4. See Fig. 16.

## Mullard

5





#### CLOCK CHARACTERISTICS (note 1)

| PARAMETER                                                                                      | SYMBOL                               | MIN.       | TYP.  | MAX.                  | UNIT     |
|------------------------------------------------------------------------------------------------|--------------------------------------|------------|-------|-----------------------|----------|
| LOW levels                                                                                     |                                      |            |       |                       |          |
| $\phi_{nA}, \phi_{nB}$                                                                         | V <sub>\$\phintsymbol{n}A/B\$</sub>  | -          | GND   | -                     |          |
| $\phi_{1C}, \phi_{2C}, \phi_{3C}$ (note 2)<br>( $\phi_{1CLOW} = \phi_{2CLOW} = \phi_{3CLOW}$ ) | V <sub>φnC</sub>                     | -          | 0     | V <sub>Nsub</sub> -10 | v        |
| TG1 (note 2)                                                                                   | V <sub>TG1</sub>                     | 0          | -     | V <sub>Nsub</sub> -10 | v        |
| TG2 (note 2)                                                                                   | V <sub>TG2</sub>                     | 0          | -     | V <sub>Nsub</sub> -10 | v        |
| Amplitudes                                                                                     |                                      |            |       |                       |          |
| $\phi_{nA}, \phi_{nB}, \phi_{nC}$                                                              | V <sub>\$\phi(p-p)</sub>             | 9,75       | 10    | 10,25                 | v        |
| Timing (See Figs 6 and 7)                                                                      |                                      |            |       |                       |          |
| Horizontal clocks                                                                              |                                      |            |       |                       |          |
| clock frequency (note 3)                                                                       | fc                                   | -          | 3,854 | -                     | MHz      |
| rise time                                                                                      | trc                                  | 20         | -     | 40                    | ns       |
| fall time                                                                                      | tfc                                  | 20         | -     | 40                    | ns       |
| fall time of $\phi_{1C}$ during horizontal blanking (note 4)                                   | tfcB                                 | -          | 200   | -                     | ns       |
| overlap time                                                                                   | t <sub>ihc</sub><br>t <sub>ilc</sub> | 10<br>5    | -     | _                     | ns<br>ns |
| Vertical clocks                                                                                |                                      |            |       |                       |          |
| clock frequency                                                                                | fcv                                  | -          | 625   | -                     | kHz      |
| rise time                                                                                      | trv                                  | -          | 70    | -                     | ns       |
| fall time                                                                                      | tfv                                  | -          | 100   | -                     | ns       |
| overlap time                                                                                   | t <sub>ihv</sub><br>tilv             | 100<br>100 | _     | _                     | ns<br>ns |
| Transfer gates                                                                                 |                                      |            |       |                       |          |
| rise time                                                                                      | trTG                                 | -          | 70    | -                     | ns       |
| fall time                                                                                      | tfTG                                 | -          | 100   | -                     | ns       |
| Clock capacitance                                                                              |                                      |            |       |                       |          |
| Each clock phase                                                                               |                                      |            |       |                       |          |
| $\phi_{nA}, \phi_{nB}$                                                                         | C <sub>\u03c6nA</sub> /B             | -          | -     | 3000                  | pF       |
| <i>φ</i> <sub>nC</sub> , TG1, TG2                                                              | $C_{\phi nC}, C_{TG1/2}$             | -          | -     | 100                   | pF       |
| Leakage current<br>of the clock connections                                                    | I1                                   | -          | -     | 10                    | μΑ       |

Notes

1. Measured with output buffer. See Fig. 5.

2. These values must be adjusted to the optimum operating point within the given range.

3. Deviations from this frequency result in incorrect aspect ratio.

4. It is recommended to use the longer fall time of the  $\phi_{1C}$  pulse during the horizontal blanking period to avoid irregular vertical stripes.

5

#### ADJUSTMENT OF OPERATING LEVELS

A reasonable picture may be obtained by using the settings quoted in the NXA1021 Test Sheet. For optimum performance, fine adjustment of the sensors d.c. levels is essential. When carrying out this operation the following points should be considered.

- Vertical stripes in the picture are usually the result of charges being unevenly sorted into the three output registers. This can be influenced by  $V_{\phi C}$ ,  $V_{OG}$ ,  $V_{TG2}$  and  $V_{TG1}$ .
- The anti-blooming performance of a sensor is influenced by its internal vertical potential gradient. This can be optimized by adjusting V<sub>Nsub</sub> and V<sub>Psub</sub>.

#### DRIVING PULSE WAVEFORMS

The specifications of the sensor are measured when the following clock pulses are applied (Figs 6 and 7). In principle the sensor can be operated with different clock pulses, e.g. different clock frequencies (overlap conditions have to be maintained).

More detailed information is available on request.



#### DRIVING PULSE WAVEFORMS (continued)





10







5

Mullard

February 1987


# Mullard

U

Frame transfer sensor

## NXA1021



Mullard

February 1987

## **OUTPUT CHARACTERISTICS** at $T_{amb} = 60 \degree C$

| PARAMETER                                                                                                                                     | SYMBOL            | MIN.           | TYP. | MAX.                                       | UNIT           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|------|--------------------------------------------|----------------|
| Load capacitance                                                                                                                              | CL                | -              | -    | 10                                         | pF             |
| Output signal voltage at standard illumination<br>(peak-to-peak value) (see notes 1 and 2)<br>Cyan channel<br>Green channel<br>Yellow channel | VOT<br>VOM<br>VOB | 30<br>27<br>60 |      | -                                          | mV<br>mV<br>mV |
| Output signal voltage at saturation<br>(peak-to-peak value) (notes 2 and 3)                                                                   | V <sub>Osat</sub> | 250            | 400  | -                                          | mV             |
| Clock cross-talk to output<br>(peak-to-peak value)                                                                                            | VOCLK             | -              | -    | 0,2                                        | v              |
| Maximum illumination on the sensor<br>without blooming (note 4)                                                                               | EB                | 1000           | -    | -                                          | lx             |
| Transport inefficiency<br>horizontal one step<br>vertical one step                                                                            | €H<br>€V          | -              | -    | 8,5x10 <sup>-5</sup><br>5x10 <sup>-5</sup> |                |
| Dark current                                                                                                                                  | ID                | -              | -    | 5                                          | nA             |
| Smear (note 5)                                                                                                                                |                   |                |      |                                            | %              |

#### Notes

1. 5 lx on the sensor, colour temperature of light source 3200 K, Hoya-IR-Filter C500S, 1 mm is used.

2. Measured with output buffer.

3. Maximum usable range of illumination 85% of saturation level.

- 4. See 'Definition of blooming'.
- 5. See 'Definition of smear'.



#### DEFINITION OF SMEAR

During the field transport time the complete field is shifted over the image section. So each pixel of one column is illuminated by all the other pixels of the column for a short time. Therefore a bright spot makes a bright vertical stripe on the image. This effect is called smear. The brightness of the stripe depends on the height of the spot and on the illumination of the spot.

It is defined by the equation:

 $V_{smear} = \frac{t_{field \ transport}}{t_{integration}} x \frac{h}{H} x \frac{E}{E_{sat}} x \ V_{sat}$ 

Where:

|        | Willere.                               |          |                                                                                 |
|--------|----------------------------------------|----------|---------------------------------------------------------------------------------|
|        | V <sub>smear</sub><br>tfield transport | =        | Additional output voltage due to smear<br>0,47 ms                               |
|        | untegration                            | =        | Height of bright spot                                                           |
|        | Н                                      | =        | Height of the complete image                                                    |
| ΓA     | E                                      | =        | Illumination of the spot                                                        |
| A.     | Esat                                   | =        | Saturation illumination                                                         |
| I D    | Vsat                                   | =        | Output voltage at saturation                                                    |
| LOPMEN | Example:                               | Sp<br>Sp | ot height is 10% of the height<br>ot illumination is 100% of saturation<br>0 47 |
| DEVE   | V <sub>smear</sub>                     | = -      | $\frac{0.47}{19,50} \ge 0.1 \ge 1 \ge V_{sat} = 0.0024 \ge V_{sat}$             |
|        |                                        |          |                                                                                 |

#### DEFINITION OF BLOOMING

When part of the image section (spot) is illuminated above saturation level and with the rest of the image dark, at a certain level of overexposure (1000 lx for the NXA1021), the area of the spot increases irregularly. This effect is called blooming.

#### PICTURE ELEMENT DEFECTS

Picture quality at Tamb = 60 °C

| GRADE | PIXEL<br>DEFECTS<br>(note 1) | CLUSTERS<br>(note 2) | COLUMN<br>DEFECTS<br>(note 3) |
|-------|------------------------------|----------------------|-------------------------------|
| 01    | 0                            | 0                    | 0                             |
| 02    | 2                            | 0                    | 0                             |
| 03    | 10                           | 2                    | 0                             |
| 04    | 35                           | 5                    | 2                             |

#### Notes

- A picture element is considered defect, if its signal deviates more than ± 10% from the mean signal of the neighbouring picture elements at standard illumination.
- A cluster is a pair of two defect pixels at a distance of less than 3% of the picture height. The sum of pixel defects and clustered pixel defects does not exceed the number of permitted pixel defects.
- If more than two pixel defects occur in one column, this is considered a column defect. Additionally the indicated number of defect pixels is allowed.

#### OUTPUT SIGNAL

The output signal is a pulse sequence with a d.c. offset. The HIGH level of the output pulses, dependent upon the d.c. adjustments, varies between 8 and 12 volts. The LOW levels depend upon the signal voltage, itself a function of the intensity of the light falling on the sensor, and is between 1,0 and 2,0 volts below the HIGH level. These pulses contain the video information and need further processing to be converted into a signal suitable for use in standard video circuitry.



# Mullard

U

#### MECHANICAL PARAMETERS

The sensor is encapsulated in a 24-lead dual in-line ceramic package with a high-quality glass viewing window on the top side for admittance of light to the sensor.



Mullard

February 1987

#### Notes to Fig. 16

- Centre-lines of all leads are within ± 0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ± 0,254 mm.
- (2) Line B is the connection line between pins 13 and 24. Pins 14 to 23 are not necessarily exactly on this line.
- (3) These two dimensions are measured at the centre-line of the package.

#### GENERAL DIMENSIONS (See Fig. 16)

| Chip thickness                                              | 525 ± 15 µm       |
|-------------------------------------------------------------|-------------------|
| Cover glass thickness                                       | 0,55 ± 0,05 mm    |
| Thickness of glue layer between sensor<br>and cavity bottom | $80 \pm 30 \mu m$ |

| Refractive index          | 1,5 |
|---------------------------|-----|
| Transmission (400-700 nm) | 90% |

Sensor is filled with dry air.

# Mullard

#### APPLICATION INFORMATION

Figure 17 shows a circuit for providing the pulse sequences needed to drive the sensor. A SAA1043 sync-pulse generator provides the three TV standards, PAL, SECAM and NTSC. These include vertical and horizontal blanking, plus black-level clamping. It also provides other signals essential for tv camera operation and can be triggered externally for operation with, for example, a VCR or computer. The sync-pulse generator drives a SAD1019 multi-norm pulse-pattern generator (MNPPG) developed specifically for the image sensors. It provides all the clock signals except the pulses for the horizontal read-out registers. Its use avoids the need to develop complex circuitry for driving the NXA1021. Fast clock pulses for the three horizontal read-out registers are generated by a pixel generator TDA4302, delivering three 3,85 MHz pulse trains with a  $120^\circ$  phase difference between them. The output levels from the MNPPG and the pixel generator are too low to drive the shift registers directly. Additional driver ICs are therefore needed to boost the signals, i.e. for the pixel generator one TDA4305 and, for the MNPPG, two TDA4301 ICs. During horizontal blanking, the pixel generator is inhibited and slower pulses, derived from the MNPPG, are applied to the pixel-generator output and, then, via the TDA4305, to the transfer gates and horizontal gate electrodes to sort the charge packets into the three horizontal read-out registers.

More detailed information is available on request.





#### DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

## NXA1031

#### Supersedes June 1986 data

## FRAME TRANSFER SENSOR

#### GENERAL DESCRIPTION

The NXA1031 frame transfer sensor is a solid state imaging device which produces two interlaced 251-line fields (including 6 lines for dark reference and testing) with an aspect ratio of 4:3.

The device is compatible with EIA TV standards and has a 7,5 mm image diagonal matching the half-inch camera tube format.

#### APPLICATIONS

- ENG cameras the high blue sensitivity and good horizontal resolution makes this sensor suiteable for 3-chip ENG colour cameras
- Surveillance cameras solid state reliability, high resolution and sensitivity provide the quality to be an ideal successor for the Newvicon<sup>®</sup> or Ultricon<sup>®</sup> pick-up element
- Character and pattern recognition the excellent linearity and uniformity recommends this sensor as a first choice for these applications
- Robotics the small size, light-weight and mechanical ruggedness makes this sensor extremely suitable for all types of high resolution robot-vision applications
- Visual aids the low voltage and mechanical ruggedness of this device allows design of safe and reliable cameras for visual aids

#### FEATURES

- Effective number of elements: 610 (horizontal) x 490 (vertical)
- Dark reference: 1 line per field for black clamping
- 100 x anti-blooming margin
- Gamma is 1
- High sensitivity, low noise
- Freedom from lag, burn-in, geometrical distortion and microphonic noise

#### **DEVICE ORGANIZATION**

- Frame transfer charge coupled device
- Unit cell size: 9,9 µm (horizontal) x 18,6 µm (vertical)
- Dummy elements: the first 5 elements of the 3 output registers are dummy elements
- On-chip high sensitivity output amplifier
- Image area: 6,0 mm (horizontal) x 4,5 mm (vertical)
- Chip size: 6,95 mm (horizontal) x 9,35 mm (vertical)

#### FUNCTIONAL DESCRIPTION

The special electrode arrangement allows 35% of the photosensitive element to be free of polysilicon. This facilitates easy penetration of the blue light into the element to provide good blue sensitivity.

The layout of the sensor is shown in Fig. 1. It comprises 3 functional areas:

- a matrix of photosensitive space elements and integration electrodes,
- a storage section,
- three BCCD read-out registers.

Figure 2 shows the transport process in the imaging and storage regions. At time  $t_0$ , the start of the first field read-out from the imaging region,  $\phi_3$  is low and the charge is concentrated beneath  $\phi_4$  to  $\phi_2$ . At  $t_1$ ,  $\phi_4$  goes low and the charge in each pixel concentrates beneath  $\phi_1$  and  $\phi_2$ . At  $t_2$ ,  $\phi_3$  goes high and the charge packets advance one gate electrode, spreading out beneath  $\phi_1$ ,  $\phi_2$  and the following electrode  $\phi_3$ . In the next step, at  $t_3$ ,  $\phi_1$  goes low compressing the charge packets beneath  $\phi_2$  and  $\phi_3$ , and at  $t_4$ ,  $\phi_4$  goes high allowing the charge packets again to advance one gate electrode. This process continues in both the imaging and storage regions until all the charge packets have transferred to the storage region.

The sensor in the integration mode is shown in Fig. 3. The first field is generated when phases  $\phi_4$ ,  $\phi_1$  and  $\phi_2$  are high and  $\phi_3$  is low, Fig. 3(a).  $\phi_3$  effectively forms a potential barrier separating the pixels in the first field. The charges generated by incident light then integrate beneath  $\phi_4$  and  $\phi_2$ , centred on  $\phi_1$ . So each pixel extends vertically over four gate electrodes.

The potential distribution of the second field, and hence its position relative to the first field is shown in Fig. 3(b). The second field is always displaced by two gate electrodes relative to the first field, with its charge patterns centred on  $\phi_3$ , and with  $\phi_1$  forming the barrier between pixels, thus providing a perfectly interlaced frame structure.

#### CAUTION

The image sensor is a MOS device which can be destroyed by static charging of the gates. Always store the device with short-circuiting clamps or on conductive foam plastic. When cleaning the glass window only use alcohol or acetone. Rub the window carefully and slowly. Dry rubbing of the window may cause static charges which can destroy the device.



2

# Mullard

U

Frame transfer sensor

## NXA1031



5

Mullard

February 1987



#### PIN DESCRIPTION

| PIN NO.              | SYMBOL                                                   | L NAME AND FUNCTION                            |  |  |
|----------------------|----------------------------------------------------------|------------------------------------------------|--|--|
| 1<br>2<br>3<br>4     | Ф2А<br>Ф4А<br>Ф1А<br>Ф3А                                 | Vertical transfer clocks for image part        |  |  |
| 5                    | LS                                                       | Light shield (A1, cover on storage part)       |  |  |
| 6                    | OG                                                       | Output gate                                    |  |  |
| 7                    | RD                                                       | Drain reset transistor                         |  |  |
| 8                    | Nsub                                                     | N-substrate; supply voltage                    |  |  |
| 9                    | GND                                                      | Ground                                         |  |  |
| 10                   | OT                                                       | Output top                                     |  |  |
| 11                   | OM                                                       | Output middle                                  |  |  |
| 12                   | OB                                                       | Output bottom                                  |  |  |
| 13<br>14<br>15       | φ <sub>3C</sub><br>φ <sub>2C</sub><br>φ <sub>1C</sub>    | Horizontal transfer clock for output register  |  |  |
| 16<br>17             | TG1<br>TG2                                               | Transfer gates                                 |  |  |
| 18                   | IG                                                       | Input gate (test point for manufacturing)      |  |  |
| 19                   | IN                                                       | Input diffusion (test point for manufacturing) |  |  |
| 20                   | P <sub>sub</sub>                                         | P-substrate                                    |  |  |
| 21<br>22<br>23<br>24 | φ <sub>2</sub> B<br>φ <sub>4</sub> B<br>φ <sub>3</sub> B | Vertical transfer clocks for storage part      |  |  |

#### RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

| PARAMETER                                 | SYMBOL               | MIN. | MAX. | UNIT |
|-------------------------------------------|----------------------|------|------|------|
| Voltages with respect to Psub             |                      |      |      |      |
| RD                                        | V <sub>RD-PSUB</sub> | -0,5 | +25  | v    |
| IN                                        | VIN-PSUB             | -0,5 | +25  | v    |
| Voltages with respect to N <sub>sub</sub> |                      |      |      |      |
| RD                                        | VRD-NSUB             | -10  | +0,5 | v    |
| IN                                        | VIN-NSUB             | -10  | +0,5 | v    |
| all other connections                     |                      | -25  | +0,5 | v    |
| Current from one output                   |                      | -    | 10   | mA   |
| Storage temperature range                 | T <sub>stg</sub>     | -55  | +80  | oC   |
| Operating ambient temperature range       | T <sub>amb</sub>     | -20  | +60  | oC   |

## DC CHARACTERISTICS at T<sub>amb</sub> = 25 °C

| PARAMETER                                                                   | SYMBOL                             | MIN. | TYP.              | MAX.              | UNIT |
|-----------------------------------------------------------------------------|------------------------------------|------|-------------------|-------------------|------|
| Voltage at LS (note 1)                                                      | V <sub>LS</sub>                    | -    | V <sub>Nsub</sub> | -                 | v    |
| Voltage at OG (note 2)                                                      | V <sub>OG</sub>                    | 2    | -                 | 10                | v    |
| Voltage at RD; (note 2) current to sensor: $I < 1 \mu A$                    | V <sub>RD</sub>                    | 10   | _                 | V <sub>Nsub</sub> | v    |
| Voltage at $N_{sub}$ ; (note 2)<br>I <10 mA                                 | V <sub>Nsub</sub>                  | 15   | 20                | 22                | v    |
| Voltage difference between $V_{Nsub}$ and $V_{RD}$                          | v <sub>Nsub</sub> -v <sub>RD</sub> | -    | -                 | 7                 | v    |
| Voltage at IG                                                               | VIG                                |      | GND               | -                 | v    |
| DC level of output voltage<br>at OT, OM, OB (notes 3 and 4)                 | VOT;OM;OB                          | 6    | -                 | 15                | v    |
| Voltage at $P_{sub}$ ; (note 2)<br>current from sensor: I $\leq$ 50 $\mu$ A | VPsub                              | 0    | -                 | 5                 | v    |
| Voltage at IN                                                               | VIN                                | -    | VNsub             | _                 | v    |
| Power dissipation                                                           | Р                                  | -    | 80                | 150               | mW   |
| Leakage current of gates                                                    | I <sub>1</sub>                     | -    | -                 | 10                | μA   |

#### Notes

1. The lightshield should be connected to  $V_{Nsub}$  (or to GND).

2. These values must be adjusted to the optimum operating point within the given range.

3. Measured with output buffer. See Fig. 5.

4. See Fig. 16.

# DEVELOPMENT DATA



6

# Mullard

U

#### CLOCK CHARACTERISTICS (note 1)

| PARAMETER                                                                                                                                                                                                                               | SYMBOL                                                                                                        | MIN.                                              | TYP.                                                  | MAX.                                                                      | UNIT                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|
| LOW levels                                                                                                                                                                                                                              |                                                                                                               |                                                   |                                                       |                                                                           |                                                                        |
| $\phi_{nA}, \phi_{nB}$                                                                                                                                                                                                                  | V <sub>\$\phinA/B\$</sub>                                                                                     | -                                                 | GND                                                   |                                                                           | -                                                                      |
| $\phi_{1C}, \phi_{2C}, \phi_{3C}$<br>$(\phi_{1CLOW} = \phi_{2CLOW} = \phi_{3CLO'}$<br>(note 2)                                                                                                                                          | w) V <sub>φnC</sub>                                                                                           | -                                                 | 0                                                     | V <sub>Nsub</sub> -10                                                     | v                                                                      |
| TG1 (note 2)                                                                                                                                                                                                                            | V <sub>TG1</sub>                                                                                              | 0                                                 | -                                                     | V <sub>Nsub</sub> -10                                                     | V                                                                      |
| TG2 (note 2)                                                                                                                                                                                                                            | V <sub>TG2</sub>                                                                                              | 0                                                 | -                                                     | V <sub>Nsub</sub> -10                                                     | v                                                                      |
| Amplitudes                                                                                                                                                                                                                              |                                                                                                               |                                                   |                                                       |                                                                           |                                                                        |
| $\phi_{nA}, \phi_{nB}, \phi_{nC}$                                                                                                                                                                                                       | V <sub>\$\phi\$(p-p)\$</sub>                                                                                  | 9,75                                              | 10                                                    | 10,25                                                                     | V .                                                                    |
| Timing (see Figs. 6 and 7)                                                                                                                                                                                                              |                                                                                                               |                                                   |                                                       |                                                                           |                                                                        |
| Horizontal clock<br>clock frequency (note 3)<br>rise time<br>fall time<br>fall time of $\phi_{1C}$ during horizont<br>blanking (note 4)<br>overlap time<br>Vertical clocks<br>clock frequency<br>rise time<br>fall time<br>overlap time | tal<br>$f_{c}$ $t_{rc}$ $t_{fc}$ $t_{fcB}$ $t_{ihc}$ $t_{ilc}$ $f_{cv}$ $t_{rv}$ $t_{fv}$ $t_{ihv}$ $t_{ihv}$ | <br>20<br>20<br><br>10<br>5<br><br><br>100<br>100 | 3,90<br><br>200<br><br>-<br>629<br>70<br>100<br><br>- | -<br>40<br>40<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | MHz<br>ns<br>ns<br>ns<br>ns<br>kHz<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
| Transfer gates<br>rise time<br>fall time                                                                                                                                                                                                | t <sub>rTG</sub><br>tfTG                                                                                      |                                                   | 70<br>100                                             |                                                                           | ns<br>ns                                                               |
| Clock capacitance                                                                                                                                                                                                                       |                                                                                                               |                                                   |                                                       |                                                                           |                                                                        |
| Each clock phase<br>$\phi_{nA}, \phi_{nB}$<br>$\phi_{nC}, TG1, TG2$                                                                                                                                                                     | CønA/B<br>CønC, CTG1/2                                                                                        | -                                                 |                                                       | 3000<br>100                                                               | pF<br>pF                                                               |
| Leakage current<br>of the clock connections                                                                                                                                                                                             | I1                                                                                                            | -                                                 | -                                                     | 10                                                                        | μA                                                                     |

Notes

1. Measured with output buffer. See Fig. 5.

2. These values must be adjusted to the optimum operating point within the given range.

3. Deviations from this frequency result in incorrect aspect ratio.

 It is recommended to use the longer fall time of the φ<sub>1C</sub> pulse during the horizontal blanking period to avoid irregular vertical stripes.



#### ADJUSTMENT OF OPERATING LEVELS

A reasonable picture may be obtained by using the settings quoted in the NXA1031 Test Sheet. For optimum performance, fine adjustment of the sensors d.c. levels is essential. When carrying out this operation the following points should be considered.

- Vertical stripes in the picture are usually the result of charges being unevenly sorted into the three output registers. This can be influenced by  $V_{\phi C}$ ,  $V_{OG}$ ,  $V_{TG2}$  and  $V_{TG1}$ .
- The anti-blooming performance of a sensor is influenced by its internal vertical potential gradient. This can be optimized by adjusting V<sub>Nsub</sub> and V<sub>Psub</sub>.

#### DRIVING PULSE WAVEFORMS

The specifications of the sensor are measured when the following clock pulses are applied (Figs 6 and 7). In principle the sensor can be operated with different clock pulses, e.g. different clock frequencies (overlap conditions have to be maintained).

More detailed information is available on request.



#### **DRIVING PULSE WAVEFORMS** (continued)



0

Mullard



# Mullard







0

# Mullard

February 1987



Frame transfer sensor

NXA1031



## OUTPUT CHARACTERISTICS at Tamb = 60 °C

| PARAMETER                                                                                                  | SYMBOL                                                   | MIN. | TYP. | MAX.                                           | UNIT |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------|------|------------------------------------------------|------|
| Load capacitance                                                                                           | CL                                                       | _    | _    | 10                                             | pF   |
| Output signal voltage at standard<br>illumination (peak-to-peak value)<br>(S/N typ. 50 dB) (notes 1 and 2) | V <sub>OTS</sub><br>V <sub>OMS</sub><br>V <sub>OBS</sub> | 65   |      | 130                                            | mV   |
| Signal to noise ratio at standard<br>illumination (notes 1,2 and 3)                                        | S/N                                                      | · •  | 50   | -                                              | dB   |
| Output signal voltage at saturation<br>(peak-to-peak value)(notes 2 and 4)                                 | V <sub>Osat</sub>                                        | 250  | 400  | -                                              | mV   |
| Clock cross-talk to output<br>(peak-to-peak value)                                                         | V <sub>OCLK</sub>                                        | -    | -    | 0,2                                            | v    |
| Maximum illumination on the sensor<br>without blooming (note 5)                                            | EB                                                       | 1000 | . –  | -                                              | lx   |
| Transport inefficiency<br>horizontal one step<br>vertical one step                                         | $\epsilon_{ m H} \epsilon_{ m V}$                        | _    | -    | 8,5 x 10 <sup>-5</sup><br>5 x 10 <sup>-5</sup> |      |
| Dark current                                                                                               | ID                                                       | -    | -    | 5                                              | nA   |
| Smear (note 6)                                                                                             |                                                          |      |      |                                                | %    |

Notes

1. 5 lx on the sensor, colour temperature of light source 3200 K, Hoya-IR-Filter C500S, 1 mm is used.

2. Measured with output buffer.

200 kHz to 5 MHz, weighted, T<sub>amb</sub> = 25 °C.
 Maximum usable range of illumination 85% of saturation level.

- 5. See "Definition of blooming".
- , 6. See "Definition of smear".



#### DEFINITION OF SMEAR

During the field transport time the complete field is shifted over the image section. So each pixel of one column is illuminated by all the other pixels of the column for a short time. Therefore a bright spot makes a bright vertical stripe on the image. This effect is called smear. The brightness of the stripe depends on the height of the spot and on the illumination of the spot.

It is defined by the equation:

smear = 
$$\frac{\text{tfield transport}}{\text{t}_{\text{integration}}} \mathbf{x} \frac{\mathbf{h}}{\mathbf{H}} \mathbf{x} \frac{\mathbf{E}}{\mathbf{E}_{\text{sat}}} \mathbf{x} \mathbf{V}_{\text{sat}}$$

V<sub>sm</sub> Where:

| where.             |   |                                        |
|--------------------|---|----------------------------------------|
| V <sub>smear</sub> | = | Additional output voltage due to smear |
| tfield transport   | = | 0,4 ms                                 |
| tintegration       | = | 16,2 ms                                |
| h                  | = | Height of bright spot                  |
| Н                  | = | Height of the complete image           |
| E                  | = | Illumination of the spot               |
| Esat               | = | Saturation illumination                |
| Vsat               | = | Output voltage at saturation           |
|                    |   |                                        |

#### Example:

Spot height is 10% of the height Spot illumination is 100% of saturation

$$V_{smear} = \frac{0.4}{16.2} \times 0.1 \times 1 \times V_{sat} = 0.0024 \times V_{sat}$$

#### DEFINITION OF BLOOMING

When part of the image section (spot) is illuminated above saturation level and with the rest of the image dark, at a certain level of overexposure (1000 1x for the NXA1031), the area of the spot increases irregularly. This effect is called blooming.

#### PICTURE ELEMENT DEFECTS

| picture quality at $I_{amb} = 60$ of | picture | quality | at Tamb | = 60 00 |
|--------------------------------------|---------|---------|---------|---------|
|--------------------------------------|---------|---------|---------|---------|

| GRADE | PIXEL<br>DEFECTS<br>(note 1) | CLUSTERS<br>(note 2) | COLUMN<br>DEFECTS<br>(note 3) |
|-------|------------------------------|----------------------|-------------------------------|
| 01    | 0                            | 0                    | 0                             |
| 02    | 2                            | 0                    | 0                             |
| 03    | 10                           | 2                    | 0                             |
| 04    | 35                           | 5                    | 2                             |

#### Notes

- A picture element is considered defect, if its signal deviates more than ± 10% from the mean signal of the neighbouring picture elements at standard illumination.
- A cluster is a pair of two defect pixels at a distance of less than 3% of the picture height. The sum of pixel defects and clustered pixel defects does not exceed the number of permitted pixel defects.
- If more than two pixel defects occur in one column, this is considered a column defect. Additionally the indicated number of defect pixels is allowed.

#### **OUTPUT SIGNAL**

The output signal is a pulse sequence with a d.c. offset. The HIGH level of the output pulses, dependent upon the d.c. adjustments, varies between 8 and 12 volts. The LOW levels depend upon the signal voltage, itself a function of the intensity of the light falling on the sensor, and is between 1,0 and 0,2 volts below the High level. These pulses contain the video information and need further processing to be converted into a signal suitable for use in standard video circuitry.



# Mullard

U

#### MECHANICAL PARAMETERS

The sensor is encapsulated in a 24-lead dual in-line ceramic package with a high-quality glass viewing window on the top side for admittance of light to the sensor.



#### Notes to Fig. 17

- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Line B is the connection line between pins 13 and 24. Pins 14 to 23 are not necessarily exactly on this line.
- These two dimensions are measured at the centre-line of the package.

#### GENERAL DIMENSIONS (See Fig. 17)

| Chip thickness                  | 525 ± 15 µm   |  |
|---------------------------------|---------------|--|
| Cover glass thickness           | 0,55 ±0,05 mm |  |
| Thickness of glue layer between |               |  |
| sensor and cavity bottom        | 80 ± 30 μm    |  |
| Refractive index                | 1,5           |  |
| Transmission (400-700 nm)       | 90%           |  |
|                                 |               |  |

Sensor is filled with dry air

#### SOLDERING

#### 1. By hand

Apply the soldering iron below the seating plane (not more than 2 mm above it). If its temperature is below 300  $^{\circ}$ C it must not be in contact for more than 10 seconds; if between 300  $^{\circ}$ C and 400  $^{\circ}$ C, for not more than 5 seconds.

#### 2. By dip or Wave

The maximum permissable temperature of the solder is  $260 \, ^{\circ}$ C, this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted up to the seating plane but the temperature of the ceramic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

#### 3. Repairing soldered joints

The same precautions and limits apply in (1) above.

20

# Mullard

U

#### APPLICATION INFORMATION

Figure 18 shows a circuit for providing the pulse sequences needed to drive the sensor. A SAA1043 sync-pulse generator provides the three TV standards PAL, SECAM and NTSC. These include vertical and horizontal blanking, plus black-level clamping. It also provides other signals essential for TV camera operation and can be triggered externally for operation with, for example, a VCR or computer. The sync-pulse generator drives a SAD1019 multi-norm pulse-pattern generator (MNPPG) developed specifically for the image sensors. It provides all the clock signals except the pulses for the horizontal read-out registers. Its use avoids the need to develop complex circuitry for driving the NXA1031. Fast clock pulses for the three horizontal read-out registers are generated by a pixel generator TDA4302, delivering three 3.9 MHz pulse trains with a 120° phase difference between them. The output levels from the MNPPG and the pixel generator are too low to drive the shift registers directly. Additional driver ICs are therefore needed to boost the signals i.e. for the pixel generator one TDA4305 and, for the MNPPG, two TDA4301 ICs. During horizontal blanking, the pixel generator is inhibited and slower pulses, derived from the MNPPG, are applied to the pixel-generator output and, then, via the TDA4305, to the transfer gates and horizontal gate electrodes to sort the charge packets into the three horizontal read-out registers.

More detailed information is available on request.



100 Aug. (201





#### DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

## NXA1041

#### Supersedes June 1986 data

# FRAME TRANSFER SENSOR

#### GENERAL DESCRIPTION

The NXA1041 frame transfer sensor is a solid state imaging device which produces two interlaced 251-line fields (including 6 lines for dark reference and testing) with an aspect ratio of 4:3.

The sensor is equipped with an on-chip colour stripe filter. The device is compatible with NTSC TV standards and has a 7,5 mm image diagonal matching the half-inch camera tube format.

#### APPLICATIONS

- Consumer entertainment cameras
- Surveillance cameras solid state reliability, high resolution and sensitivity provide the quality to be an ideal successor for your stripe camera tube
- Visual aids the low voltage and mechanical ruggedness of this device allows design of safe and reliable cameras for visual aids
- · Slide and film scanners for consumer applications

#### FEATURES

- Effective number of elements: 610 (horizontal) x 490 (vertical)
- · Cyan, green, yellow stripe filter on the chip
- Dark reference: 1 line per field for black clamping
- 100 x anti-blooming margin
- Gamma is 1
- · High sensitivity, low noise
- Freedom from lag, burn-in, geometrical distortion and microphonic noise

#### DEVICE ORGANIZATION

- Frame transfer charge coupled device
- Unit cell size: 9,9 µm (horizontal) x 18,6 µm (vertical)
- · Separate outputs for the cyan, green, and yellow channels
- Dummy elements: the first 5 elements of the 3 output registers are dummy elements
- · On-chip high sensitivity output amplifier
- Image area: 6,0 mm (horizontal) x 4,5 mm (vertical)
- Chip size: 6,95 mm (horizontal) x 9,35 mm (vertical)

#### FUNCTIONAL DESCRIPTION

The special electrode arrangement allows 35% of the photosensitive element to be free of polysilicon. This facilitates easy penetration of the blue light into the element to provide good blue sensitivity.

The layout of the sensor is shown in Fig. 1. It comprises 3 functional areas:

- a matrix of photosensitive elements and integration electrodes,
- a storage section,
- three BCCD read-out registers.

Figure 2 shows the transport process in the imaging and storage regions. At time  $t_0$ , the start of the first field read-out from the imaging region,  $\phi_3$  is low and the charge is concentrated beneath  $\phi_4$  to  $\phi_2$ . At  $t_1$ ,  $\phi_4$  goes low and the charge in each pixel concentrates beneath  $\phi_1$  and  $\phi_2$ . At  $t_2$ ,  $\phi_3$  goes high and the charge packets advance one gate electrode, spreading out beneath  $\phi_1$ ,  $\phi_2$  and the following electrode  $\phi_3$ . In the next step, at  $t_3$ ,  $\phi_1$  goes low compressing the charge packets beneath  $\phi_2$  and  $\phi_3$ , and at  $t_4$ ,  $\phi_4$  goes high allowing the charge packets again to advance one gate electrode. This process continues in both the imaging and storage regions until all the charge packets have transferred to the storage region.

The sensor in the integration mode is shown in Fig. 3. The first field is generated when phases  $\phi_4$ ,  $\phi_1$  and  $\phi_2$  are high and  $\phi_3$  is low, Fig. 3(a).  $\phi_3$  effectively forms a potential barrier separating the pixels in the first field. The charges generated by incident light then integrate beneath  $\phi_4$  and  $\phi_2$ , centred on  $\phi_1$ . So each pixel extends vertically over four gate electrodes.

The potential distribution of the second field, and hence its position relative to the first field is shown in Fig. 3(b). The second field is always displaced by two gate electrodes relative to the first field, with its charge patterns centred on  $\phi_3$ , and with  $\phi_1$  forming the barrier between pixels, thus providing a perfectly interlaced frame structure.

#### CAUTION

Mullard

The image sensor is a MOS device which can be destroyed by static charging of the gates. Always store the device with short-circuiting clamps or on conductive foam plastic. When cleaning the glass window only use alcohol or acetone. Rub the window carefully and slowly. Dry rubbing of the window may cause static charges which can destroy the device.

February 1987


2

# Mullard

Frame transfer sensor

### NXA1041



Mullard

February 1987



#### PIN DESCRIPTION

| PIN NO.              | SYMBOL                                                         | NAME AND FUNCTION                              |
|----------------------|----------------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4     | φ2A<br>φ4A<br>φ1A<br>φ3A                                       | Vertical transfer clocks for image part        |
| 5                    | LS                                                             | Light shield (Al. cover on storage part)       |
| 6                    | OG                                                             | Output gate                                    |
| 7                    | RD                                                             | Drain reset transistor                         |
| 8                    | N <sub>sub</sub>                                               | N-substrate; supply voltage                    |
| 9                    | GND                                                            | Ground                                         |
| 10                   | OT                                                             | Output top (cyan)                              |
| 11                   | OM                                                             | Output middle (green)                          |
| 12                   | OB                                                             | Output bottom (yellow)                         |
| 13<br>14<br>15       | Φ3C<br>Φ2C<br>Φ1C                                              | Horizontal transfer clock for output register  |
| 16<br>17             | TG1<br>TG2                                                     | Transfer gate                                  |
| 18                   | IG                                                             | Input gate (test point for manufacturing)      |
| 19                   | IN                                                             | Input diffusion (test point for manufacturing) |
| 20                   | P <sub>sub</sub>                                               | P-substrate                                    |
| 21<br>22<br>23<br>24 | <ul> <li>φ2B</li> <li>φ4B</li> <li>φ3B</li> <li>φ1B</li> </ul> | Vertical transfer clocks for storage part      |

February 1987

## Mullard

### RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

| PARAMETER                                                                      | SYMBOL                               | MIN.              | MAX.                 | UNIT        |
|--------------------------------------------------------------------------------|--------------------------------------|-------------------|----------------------|-------------|
| Voltages with respect to P <sub>sub</sub><br>RD<br>IN                          | VRD-PSUB<br>VIN-PSUB                 | 0,5<br>0,5        | +25<br>+25           | V<br>V      |
| Voltages with respect to N <sub>sub</sub><br>RD<br>IN<br>all other connections | VRD-NSUB<br>VIN-NSUB                 | -10<br>-10<br>-25 | +0,5<br>+0,5<br>+0,5 | V<br>V<br>V |
| Current from one output                                                        |                                      | -                 | 10                   | mA          |
| Storage temperature range<br>Operating ambient temperature range               | T <sub>stg</sub><br>T <sub>amb</sub> | -30<br>-20        | +80<br>+60           | °C<br>°C    |

### DC CHARACTERISTICS at Tamb = 25 °C

| PARAMETER                                                              | SYMBOL                             | MIN. | TYP.              | MAX.              | UNIT |
|------------------------------------------------------------------------|------------------------------------|------|-------------------|-------------------|------|
| Voltage at LS (note 1)                                                 | V <sub>LS</sub>                    | -    | V <sub>Nsub</sub> | -                 | v    |
| Voltage at OG (note 2)                                                 | VOG                                | 2    | _                 | 10                | v    |
| Voltage at RD; (note 2)<br>current to sensor: $I < 1 \mu A$            | V <sub>RD</sub>                    | 10   | _                 | V <sub>Nsub</sub> | v    |
| Voltage at N <sub>sub</sub> ; (note 2) $I < 10 \text{ mA}$             | V <sub>Nsub</sub>                  | 15   | 20                | 22                | v    |
| Voltage difference between $V_{Nsub}$ and $V_{RD}$                     | V <sub>Nsub</sub> –V <sub>RD</sub> | _    | _                 | 7                 | v    |
| Voltage at IG                                                          | VIG                                | -    | GND               | -                 | v    |
| DC level of output voltage<br>at OT, OM, OB (notes 3 and 4)            | VOT;OM;OB                          | 6    | -                 | 15                | v    |
| Voltage at $P_{sub}$ ; (note 2)<br>current from sensor: $I < 50 \mu A$ | V <sub>Psub</sub>                  | 0    | -                 | 5                 | v    |
| Voltage at IN                                                          | VIN                                | -    | V <sub>Nsub</sub> | -                 | v    |
| Power dissipation                                                      | Р                                  | -    | 80                | 150               | mW   |
| Leakage current of gates                                               | Il                                 | -    | -                 | 10                | μA   |

#### Notes

1. The lightshield should be connected to  $V_{\mbox{Nsub}}$  (or to GND).

2. These values must be adjusted to the optimum operating point within the given range.

3. Measured with output buffer. See Fig. 5.

4. See Fig. 16.

## し



6

# Mullard

#### CLOCK CHARACTERISTICS (note 1)

| PARAMETER                                                                                      | SYMBOL                               | MIN.       | TYP. | MAX.                  | UNIT     |
|------------------------------------------------------------------------------------------------|--------------------------------------|------------|------|-----------------------|----------|
| LOW levels                                                                                     |                                      |            |      |                       |          |
| $\phi_{nA}, \phi_{nB}$                                                                         | V <sub>\u03c6</sub> nA/B             | -          | GND  | -                     | -        |
| $\phi_{1C}, \phi_{2C}, \phi_{3C}$ (note 2)<br>( $\phi_{1CLOW} = \phi_{2CLOW} = \phi_{3CLOW}$ ) | V <sub>\u03c6</sub> nC               | -          | 0    | V <sub>Nsub</sub> -10 | v        |
| TG1 (note 2)                                                                                   | V <sub>TG1</sub>                     | 0          | -    | V <sub>Nsub</sub> -10 | V        |
| TG2 (note 2)                                                                                   | V <sub>TG2</sub>                     | 0          | -    | $v_{Nsub}-10$         | V        |
| Amplitudes                                                                                     |                                      |            |      |                       |          |
| $\phi_{nA}, \phi_{nB}, \phi_{nC}$                                                              | $V_{\phi(p-p)}$                      | 9,75       | 10   | 10,25                 | V        |
| Timing (See Figs 6 and 7)                                                                      |                                      | l na       |      |                       |          |
| Horizontal clock                                                                               |                                      |            |      |                       |          |
| clock frequency (note 3)                                                                       | fc                                   | -          | 3,90 | -                     | MHz      |
| rise time                                                                                      | t <sub>rc</sub>                      | 20         | -    | 40                    | ns       |
| fall time                                                                                      | tfc                                  | 20         |      | 40                    | ns       |
| fall time of $\phi_{1C}$ during<br>horizontal blanking (note 4)                                | tfcB                                 | -          | 200  |                       | ns       |
| overlap time                                                                                   | t <sub>ihc</sub><br>t <sub>ilc</sub> | 10<br>5    | _    | _                     | ns<br>ns |
| Vertical clock                                                                                 |                                      |            |      |                       |          |
| clock frequency                                                                                | fcv                                  | -          | 629  | -                     | kHz      |
| rise time                                                                                      | t <sub>rv</sub>                      | -          | 70   | -                     | ns       |
| fall time                                                                                      | tfv                                  | -          | 100  | -                     | ns       |
| overlap time                                                                                   | t <sub>ihv</sub><br>t <sub>ilv</sub> | 100<br>100 | _    | _                     | ns<br>ns |
| Transfer gates                                                                                 |                                      |            |      |                       |          |
| rise time                                                                                      | trTG                                 |            | 70   | -                     | ns       |
| fall time                                                                                      | tfTG                                 | -          | 100  | -                     | ns       |
| Clock capacitance                                                                              |                                      |            |      |                       |          |
| Each clock phase                                                                               |                                      |            |      |                       |          |
| $\phi_{nA}, \phi_{nB}$                                                                         | $C_{\phi nA/B}$                      | -          | -    | 3000                  | pF       |
| φ <sub>nC</sub> , TG1, TG2                                                                     | $C_{\phi nC}, C_{TG1/2}$             | -          | -    | 100                   | pF       |
| Leakage current<br>of the clock connections                                                    | Il                                   | -          |      | 10                    | μΑ       |

#### Notes

1. Measured with output buffer. See Fig. 5.

2. These values must be adjusted to the optimum operating point within the given range.

3. Deviations from this frequency result in incorrect aspect ratio.

 It is recommended to use the longer fall time of the φ<sub>1C</sub> pulse during the horizontal blanking period to avoid irregular vertical stripes.

#### ADJUSTMENT OF OPERATING LEVELS

A reasonable picture may be obtained by using the settings quoted in the NXA1041 Test Sheet. For optimum performance, fine adjustment of the sensors d.c. levels is essential. When carrying out this operation the following points should be considered.

- Vertical stripes in the picture are usually the result of charges being unevenly sorted into the three output registers. This can be influenced by  $V_{\phi C},\,V_{OG},\,V_{TG2}$  and  $V_{TG1}$ .
- The anti-blooming performance of a sensor is influenced by its internal vertical potential gradient. This can be optimized by adjusting V<sub>Nsub</sub> and V<sub>Psub</sub>.

#### DRIVING PULSE WAVEFORMS

The specifications of the sensor are measured when the following clock pulses are applied (Figs 6 and 7). In principle the sensor can be operated with different clock pulses, e.g. different clock frequencies (overlap conditions have to be maintained).

More detailed information is available on request.



8

**DRIVING PULSE WAVEFORMS (continued)** 







## Mullard







0

Mullard

February 1987



## Mullard

Frame transfer sensor

### NXA1041



### **OUTPUT CHARACTERISTICS** at Tamb = 60 °C

| PARAMETER                                                                                                                                     | SYMBOL            | MIN.           | TYP. | MAX.                                       | UNIT           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|------|--------------------------------------------|----------------|
| Load capacitance                                                                                                                              | CL                | -              |      | 10                                         | pF             |
| Output signal voltage at standard illumination<br>(peak-to-peak value) (see notes 1 and 2)<br>Cyan channel<br>Green channel<br>Yellow channel | VOT<br>VOM<br>VOB | 30<br>27<br>60 | -    |                                            | mV<br>mV<br>mV |
| Output signal voltage at saturation<br>(peak-to-peak value) (notes 2 and 3)                                                                   | VOsat             | 250            | 400  | -                                          | mV             |
| Clock cross-talk to output<br>(peak-to-peak value)                                                                                            | VOCLK             | -              | -    | 0,2                                        | v              |
| Maximum illumination on the sensor<br>without blooming (note 4)                                                                               | EB                | 1000           | -    | -                                          | lx             |
| Transport inefficiency<br>horizontal one step<br>vertical one step                                                                            | €H<br>€V          | -              | -    | 8,5x10 <sup>-5</sup><br>5x10 <sup>-5</sup> |                |
| Dark current                                                                                                                                  | ID                | -              | -    | 5                                          | nA             |
| Smear (note 5)                                                                                                                                |                   |                |      |                                            | %              |

#### Notes

1. 5 lx on the sensor, colour temperature of light source 3200 K, Hoya-IR-Filter C500S, 1 mm is used.

2. Measured with output buffer.

3. Maximum usable range of illumination 85% of saturation level.

- 4. See 'Definition of blooming'.
- 5. See 'Definition of smear'.



#### DEFINITION OF SMEAR

During the field transport time the complete field is shifted over the image section. So each pixel of one column is illuminated by all the other pixels of the column for a short time. Therefore a bright spot makes a bright vertical stripe on the image. This effect is called smear. The brightness of the stripe depends on the height of the spot and on the illumination of the spot.

It is defined by the equation:

$$V_{smear} = \frac{t_{field \ transport}}{t_{integration}} x \frac{h}{H} x \frac{E}{E_{sat}} x \ V_{sat}$$

Where:

| V <sub>smear</sub> | = Additional output voltage due to smear |
|--------------------|------------------------------------------|
| tfield transport   | = 0,4 ms                                 |
| tintegration       | = 16,2 ms                                |
| h                  | = Height of bright spot                  |
| Н                  | = Height of the complete image           |
| E                  | = Illumination of the spot               |
| Esat               | = Saturation illumination                |
| Vsat               | = Output voltage at saturation           |
| Example:           | Spot height is 10% of the height         |
|                    | Spot illumination is 100% of saturation  |
|                    | 0,4                                      |

 $V_{smear} = \frac{0.4}{16.2} \times 0.1 \times 1 \times V_{sat} = 0.0024 \times V_{sat}$ 

#### **DEFINITION OF BLOOMING**

When part of the image section (spot) is illuminated above saturation level and with the rest of the image dark, at a certain level of overexposure (1000 lx for the NXA1041), the area of the spot increases irregularly. This effect is called blooming.

#### PICTURE ELEMENT DEFECTS

Picture quality at  $T_{amb} = 60 \ ^{\circ}C$ 

| GRADE | PIXEL<br>DEFECTS<br>(note 1) | CLUSTERS<br>(note 2) | COLUMN<br>DEFECTS<br>(note 3) |
|-------|------------------------------|----------------------|-------------------------------|
| 01    | 0                            | 0                    | 0                             |
| 02    | 2                            | 0                    | 0                             |
| 03    | 10                           | 2                    | 0                             |
| 04    | 35                           | 5                    | 2                             |

#### Notes

- A picture element is considered defect, if its signal deviates more than ± 10% from the mean signal of the neighbouring picture elements at standard illumination.
- A cluster is a pair of two defect pixels at a distance of less than 3% of the picture height. The sum of pixel defects and clustered pixel defects does not exceed the number of permitted pixel defects.
- 3. If more than two pixel defects occur in one column, this is considered a column defect.

Additionally the indicated number of defect pixels is allowed.

#### OUTPUT SIGNAL

The output signal is a pulse sequence with a d.c. offset. The HIGH level of the output pulses, dependent upon the d.c. adjustments, varies between 8 and 12 volts. The LOW levels depend upon the signal voltage, itself a function of the intensity of the light falling on the sensor, and is between

1,0 and 0,2 volts below the HIGH level. These pulses contain the video information and need further processing to be converted into a signal suitable for use in standard video circuitry.



## Mullard

#### MECHANICAL PARAMETERS

The sensor is encapsulated in a 24-lead dual in-line ceramic package with a high-quality glass viewing window on the top side for admittance of light to the sensor.





DEVELOPMENT DATA

### Notes to Fig. 16

- Centre-lines of all leads are within ± 0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ± 0,254 mm.
- (2) Line B is the connection line between pins 13 and 24. Pins 14 and 23 are not necessarily exactly on this line.
- (3) These two dimensions are measured at the centre-line of the package.

#### **GENERAL DIMENSIONS** (See Fig. 16)

| Chip thickness                                              | 525 ± 15 μm    |
|-------------------------------------------------------------|----------------|
| Cover glass thickness                                       | 0,55 ± 0,05 mm |
| Thickness of glue layer between sensor<br>and cavity bottom | 80 ± 30 µm     |
| Refractive index                                            | 1,5            |
| Transmission (400-700 nm)                                   | 90%            |

Sensor is filled with dry air.

February 1987

#### APPLICATION INFORMATION

Figure 17 shows a circuit for providing the pulse sequence needed to drive the sensor. A SAA1043 sync-pulse generator provides the three TV standards, PAL, SECAM and NTSC. These include vertical and horizontal blanking, plus black-level clamping. It also provides other signals essential for TV camera operation and can be triggered externally for operation with, for example, a VCR or computer. The sync-pulse generator drives a SAD1019 multi-norm pulse-pattern generator (MNPPG) developed specifically for the image sensors. It provides all the clock signals except the pulses for the horizontal read-out registers. Its use avoids the need to develop complex circuitry for driving the NXA1041. Fast clock pulses for the three horizontal read-out registers are generated by a pixel generator TDA4302, delivering three 3,9 MHz pulse trains with a 120° phase difference between them. The output levels from the MNPPG and the pixel generator are too low to drive the shift registers directly. Additional driver ICs are therefore needed to boost the signals, i.e. for the pixel generator one TDA4305 and, for the MNPPG, two TDA4301 ICs. During horizontal blanking, the pixel generator is inhibited and slower pulses, derived from the MNPPG, are applied to the pixel-generator output and, then, via the TDA4305, to the transfer gates and horizontal gate electrodes to sort the charge packets into the three horizontal read-out registers.

More detailed information is available on request.



M87-1049/RC

## Mullard

February 1987







Image intensifier tubes

Transmitting and r.f. heating tubes

## AIR COOLED V.H.F. POWER, TETRODE

Forced air cooled coaxial power tetrode in metal-ceramic construction primarily intended for use as a linear broad-band amplifier in TV transmitters in the bands I and III. This type is also very suitable for a.m. and f.m. broadcast and a.f. modulator applications, and in TV transposer service.

### QUICK REFERENCE DATA

| Class-AB linear amplifier (vision)                       |                 |            |                   |
|----------------------------------------------------------|-----------------|------------|-------------------|
| Frequency                                                | f               | 175,25     | MHz               |
| Anode voltage                                            | Va              | 8          | kV                |
| Output power in load, sync                               | We              | 27,5       | kW                |
| Power gain, sync                                         | G               | 14,5       | dB                |
| Class-B f.m. telephony                                   |                 |            |                   |
| Frequency                                                | f               | 260        | MHz               |
| Anode voltage                                            | Va              | 8,5        | kV                |
| Output power in load                                     | Wg              | 25         | kW                |
| Power gain                                               | G               | 14,9       | dB                |
| Television transposer service                            |                 |            |                   |
| Frequency                                                | f               | 175 to 225 | MHz               |
| Anode voltage                                            | Va              | 8          | kV                |
| Output power in load, sync                               | Wg              | 10,5       | kW                |
| Power gain, sync                                         | G               | 16,2       | dB                |
| HEATING: direct; thoriated tungsten filament, mesh type. |                 |            |                   |
| Filament voltage                                         | Vf              | 10,4       | $V^{+1\%}_{-3\%}$ |
| Filament current                                         | ۱ <sub>f</sub>  | 115        | A                 |
| Filament peak starting current                           | l <sub>fp</sub> | max. 750   | А                 |
| Cold filament resistance                                 | R <sub>fo</sub> | 10,5       | m $\Omega$        |
| Waiting time                                             | t               | min. 1     | S                 |

5

Mullard

### TYPICAL CHARACTERISTICS

| Anode voltage        | Va                | 8   | kV   |
|----------------------|-------------------|-----|------|
| Grid 2 voltage       | V <sub>g2</sub>   | 700 | V    |
| Anode current        | la                | 2,4 | А    |
| Transconductance     | S                 | 60  | mA/V |
| Amplification factor | <sup>µ</sup> g2g1 | 8,5 |      |

#### CAPACITANCES

|                                       | ground           | ed cathode | gr       | ounded grid |
|---------------------------------------|------------------|------------|----------|-------------|
| Input                                 | Ci               | 135        | Ci       | 69 pF       |
| Output                                | Co               | 23         | Co       | 23 pF       |
| Anode to grid 1                       | C <sub>ag1</sub> | 0,85       |          | pF          |
| Anode to filament                     |                  |            | $C_{af}$ | 0,25 pF     |
| TEMPERATURE LIMITS                    |                  |            |          |             |
| Absolute maximum envelope temperature |                  | Tenv       | max.     | 240 °C      |
| Recommended maximum seal temperature  |                  | т          | max.     | 200 °C      |

### COOLING

See cooling curves.

Direction of airflow: see outline drawing.

The air should be ducted so that sufficient air is directed to the seals to keep the seal temperature below the limit.

### ACCESSORIES

| Band I  | amplifier circuit assembly (vision)   | type 40759 |
|---------|---------------------------------------|------------|
| Band I  | amplifier circuit assembly (sound)    | type 40760 |
| Band II | I amplifier circuit assembly (vision) | type 40768 |
| Band II | l amplifier circuit assembly (sound)  | type 40769 |

2

YL1520

#### MECHANICAL DATA

Dimensions in mm

Net mass: approx. 11 kg Mounting position: vertical with anode up or down



### R.F. CLASS-AB LINEAR AMPLIFIER FOR TELEVISION SERVICE

Negative modulation, positive synchronization (C.C.I.R. system). Unless otherwise specified the voltages are given with respect to the cathode.

| LIMITING VALUES (Absolute maximum rating system) |                      |       |        |        | notes |
|--------------------------------------------------|----------------------|-------|--------|--------|-------|
| Frequency                                        | f                    | up to | 260    | MHz    |       |
| Anode voltage                                    | Va                   | max.  | 9      | kV     |       |
| Grid 2 voltage                                   | V <sub>g2</sub>      | max.  | 1      | kV     |       |
| Grid 1 voltage                                   | $-V_{g1}$            | max.  | 500    | V      |       |
| Anode current, black                             | l <sub>a black</sub> | max.  | 7      | А      |       |
| Anode input power, black                         | Wia black            | max.  | 40     | kW     |       |
| Anode dissipation                                | Wa                   | max.  | 18     | kW     |       |
| Grid 2 dissipation                               | Wg2                  | max.  | 100    | W      |       |
| Grid 1 dissipation                               | Wg1                  | max.  | 50     | W      |       |
| Cathode current                                  | ۱ <sub>k</sub>       | max.  | 9      | А      |       |
| OPERATING CONDITIONS grounded grid               |                      |       |        |        |       |
| Frequency of vision carrier                      | f                    |       | 175,25 | MHz    |       |
| Bandwidth (-1 dB)                                | В                    |       | 7,5    | MHz    | 1     |
| Anode voltage                                    | Va                   |       | 8      | kV     |       |
| Grid 2 voltage                                   | V <sub>q2</sub>      |       | 700    | $\vee$ |       |
| Grid 1 voltage                                   | V <sub>q1</sub>      |       | -84    | V      | 2     |
| Anode current, no-signal condition               | la                   |       | 900    | mA     |       |
| Anode current, black                             | l <sub>a</sub> black |       | 3,9    | A      | 3     |
| Grid 2 current, black                            | lg2 black            |       | 55     | mA     | 3     |
| Grid 1 current, black                            | Ig1 black            |       |        | mA     | 3     |
| Output power in load, sync                       | Wesync               |       | 27,5   | kW     |       |
| Output power in load, black                      | W & black            |       | 16,5   | kW     | 3     |
| Anode dissipation, black                         | Wa black             |       | 14     | kW     |       |
| Driving power, sync                              | W <sub>dr sync</sub> |       | 965    | W      |       |
| Driving power, black                             | Wdr black            |       | 520    | W      |       |
| Gain, sync                                       | G <sub>sync</sub>    |       | 14,5   | dB     |       |
| Gain, black                                      | Gblack               |       | 15     | dB     |       |
| Sync compression                                 | sync in/out          |       | 30/25  |        | 4     |
| Differential phase                               |                      |       | < 3    | deg    | 5     |
| Differential gain                                |                      |       | ≥85    | %      | 5     |
| L.F. linearity                                   |                      |       | ≥85    | %      | 5     |

Notes: see page 5

4

## Mullard

| OPERATING CONDITIONS          | (continued) |                       |       |       |     | notes |
|-------------------------------|-------------|-----------------------|-------|-------|-----|-------|
| Frequency of vision carrier   |             | f                     | 83,25 | 55,25 | MHz |       |
| Bandwidth (-1 dB)             |             | В                     | 7     | 7     | MHz | 1     |
| Anode voltage                 |             | Va                    | 6,5   | 6,5   | kV  |       |
| Grid 2 voltage                |             | V <sub>g2</sub>       | 700   | 700   | V   |       |
| Grid 1 voltage                |             | V <sub>g1</sub>       | -88   | -88   | V   | 2     |
| Anode current, no signal cond | lition      | la                    | 900   | 900   | mA  |       |
| Anode current, black          |             | l <sub>a black</sub>  | 4,1   | 4,5   | A   | 3     |
| Grid 2 current, black         |             | lg2 black             | 55    | 45    | mA  | 3     |
| Grid 1 current, black         |             | Ig1 black             | 160   | 175   | mA  | 3     |
| Output power in load, sync    |             | W <sub>l</sub> sync   | 20    | 20    | kW  |       |
| Output power in load, black   |             | Wg black              | 12    | 12    | kW  | 3     |
| Anode dissipation, black      |             | Wa black              | 14,6  | 17,2  | kW  |       |
| Driving power, sync           |             | W <sub>dr sync</sub>  | 835   | 910   | W   |       |
| Driving power, black          |             | W <sub>dr</sub> black | 444   | 520   | W   |       |
| Gain, sync                    |             | G <sub>sync</sub>     | 13,8  | 13,4  | dB  |       |
| Gain, black                   |             | G <sub>black</sub>    | 14,3  | 13,6  | dB  |       |
| Sync compression              |             | sync in/out           | 30/25 | 27/25 |     | 4     |
| Differential phase            |             |                       | < 3   | < 3   | deg | 5     |
| Differential gain             |             |                       | ≥85   | ≥ 85  | %   | 5     |
| L.F. linearity                |             |                       | ≥85   | ≥85   | %   | 5     |
|                               |             |                       |       |       |     |       |

#### NOTES

- 1. With double tuned circuit.
- 2. To be adjusted for the stated no signal anode current.
- 3. Black signal including line sync pulses.
- A picture/sync ratio of 75/25 for the outgoing signal requires a ratio of max. 70/30 for the incoming signal in which case the sync compression sync in/out = 30/25.
- 5. Measured with 9-step staircase amplitude, running from 17% to 75% of the peak sync value, with superimposed a 4,43 MHz sine wave with a 10% peak to peak value.
- 6. At c.w. output power = 10,5 kW.
- 7. Three-tone test method (vision carrier -8 dB, sound carrier -10 dB, sideband signal -16 dB with respect to peak sync = 0 dB).



### R.F. CLASS-AB AMPLIFIER FOR TELEVISION TRANSPOSER SERVICE grounded grid

#### LIMITING VALUES

See page 120.

### **OPERATING CONDITIONS** grounded grid

| Negative modulation, positive synchronization, combined sound and (CCIR standard G) | vision          |            |     | notes |
|-------------------------------------------------------------------------------------|-----------------|------------|-----|-------|
| Frequency                                                                           | f               | 175 to 225 | MHz |       |
| Bandwidth (-1 dB)                                                                   | В               | 8          | MHz | 1     |
| Anode voltage                                                                       | Va              | 8          | kV  |       |
| Grid 2 voltage                                                                      | V <sub>g2</sub> | 900        | V   |       |
| Grid 1 coltage                                                                      | V <sub>g1</sub> | -95        | V   | 2     |
| Anode current, no signal condition                                                  | la              | 1,8        | A   |       |
| Anode current                                                                       | la              | 3,3        | А   | 6     |
| Grid 2 current                                                                      | Ig2             | 35         | mΑ  | 6     |
| Grid 1 current                                                                      | l <sub>g1</sub> | 20         | mΑ  | 6     |
| Driving power, sync                                                                 | Wdr             | 250        | W   |       |
| Output power in load, sync                                                          | Wę              | 10,5       | kW  |       |
| Power gain                                                                          | G               | 16,2       | dB  |       |
| Intermodulation products                                                            | d               | -56        | dB  | 7     |
|                                                                                     |                 |            |     |       |

Notes: see page 5

## Mullard

### R.F. CLASS-B F.M. TELEPHONY

| LIMITING VALUES (Absolute maximum rating system) |                 |       |      |     | note |
|--------------------------------------------------|-----------------|-------|------|-----|------|
| Frequency                                        | f               | up to | 260  | MHz |      |
| Anode voltage                                    | Va              | max.  | 9,5  | kV  |      |
| Grid 2 voltage                                   | V <sub>g2</sub> | max.  | 1    | kV  |      |
| Grid 1 voltage                                   | $-V_{g1}$       | max.  | 500  | V   |      |
| Anode current                                    | l <sub>a</sub>  | max.  | 7    | А   |      |
| Anode input power                                | Wia             | max.  | 42   | kW  |      |
| Anode dissipation                                | Wa              | max.  | 18   | kW  |      |
| Grid 2 dissipation                               | W <sub>q2</sub> | max.  | 100  | W   |      |
| Grid 1 dissipation                               | W <sub>g1</sub> | max.  | 50   | W   |      |
| Cathode current                                  | l <sub>k</sub>  | max.  | 9    | А   |      |
| OPERATING CONDITIONS                             |                 |       |      |     |      |
| Frequency                                        | f               |       | 260  | MHz |      |
| Anode voltage                                    | Va              |       | 8,5  | kV  |      |
| Grid 2 voltage                                   | V <sub>a2</sub> |       | 700  | V   |      |
| Grid 1 voltage                                   | V <sub>q1</sub> |       | -106 | V   | 2    |
| Anode current, no signal condition               | l <sub>a</sub>  |       | 300  | mA  |      |
| Anode current                                    | la              |       | 4,6  | A   |      |
| Grid 2 current                                   | lg2             |       | 100  | mA  |      |
| Grid 1 current                                   | lg1             |       | 325  | mA  |      |
| Anode input power                                | Wia             |       | 39,1 | kW  |      |
| Anode dissipation                                | Wa              |       | 14   | kW  |      |
| Output power in load                             | We              |       | 25   | kW  |      |
| Efficiency, total                                |                 |       | 64   | %   |      |
| Driving power                                    | Wdr             |       | 800  | W   |      |
| Power gain                                       | G               |       | 14,9 | dB  |      |
|                                                  |                 |       |      |     |      |

Mullard

September 1984

7

Note: see page 5





September 1984

Mullard

5



# Mullard



Mullard

M84-1821/Y




## AIR COOLED V.H.F. POWER TETRODE

Forced air cooled coaxial power tetrode in metal-ceramic construction primarily intended for use in R.F. power amplifier applications up to 250 MHz.

#### QUICK REFERENCE DATA

| Class-B amplifier (C.W.)                                  |                                          |                     |                       |   |
|-----------------------------------------------------------|------------------------------------------|---------------------|-----------------------|---|
| Frequency                                                 | f                                        | 170 - 230           | MHz                   |   |
| Anode voltage                                             | Va                                       | 10                  | kV                    |   |
| Output power in load                                      | Wg                                       | 35                  | kW                    |   |
| Power gain                                                | G                                        | 16                  | dB                    |   |
| HEATING: direct; thoriated tungsten filament, mesh type.  |                                          |                     |                       |   |
| Filament voltage                                          | Vf                                       | 7,5                 | $\vee ^{+1\%}_{-3\%}$ | 4 |
| Filament current                                          | ۱ <sub>f</sub>                           | 180                 | A                     |   |
| Filament peak starting current                            | l <sub>fp</sub>                          | max. 1000           | A                     |   |
| Cold filament resistance                                  | R <sub>fo</sub>                          | 4,2                 | mΩ                    |   |
| Waiting time                                              | tw                                       | min. 1              | S                     |   |
| TYPICAL CHARACTERISTICS                                   |                                          |                     |                       |   |
| Anode voltage                                             | Va                                       | 10                  | kV                    |   |
| Grid 2 voltage                                            | V <sub>g2</sub>                          | 900                 | V                     |   |
| Anode current<br>Transconductance<br>Amplification factor | Ι <sub>a</sub><br>S<br><sup>μ</sup> g2g1 | ≈ 2,4<br>≈ 70<br>10 | A<br>mA/V             |   |

Mullard

| CAPACITANCES, grounded grid           |      | ground | led grid |
|---------------------------------------|------|--------|----------|
| Input                                 | Ci   |        | 86 pF    |
| Output                                | Co   |        | 29 pF    |
| Anode to filament                     | Caf  | <      | 0,3 pF   |
| TEMPERATURE LIMITS                    |      |        |          |
| Absolute maximum envelope temperature | Tenv | max.   | 240 °C   |
| Recommended maximum seal temperature  | т    | max.   | 200 °C   |

#### COOLING

| W <sub>a</sub> + W <sub>g</sub><br>kW | h<br>m | T <sub>i</sub><br>°C | <sup>q</sup> min<br>m³/min. | p <sub>i</sub> , tube only<br>Pa | p <sub>i</sub> including<br>circuit assembly<br>Pa | max. T out<br>°C |
|---------------------------------------|--------|----------------------|-----------------------------|----------------------------------|----------------------------------------------------|------------------|
| 25                                    | 500    | 40                   | 30                          | 1000                             | 1600                                               | 94               |







Air cooled v.h.f. power tetrode

YL1530

#### R.F. CLASS-B POWER AMPLIFIER

Unless otherwise stated, the voltages are given with respect to the cathode.

LIMITING VALUES (Absolute maximum rating system)

| Frequency                            | f               | up to  | 250  | MHz |
|--------------------------------------|-----------------|--------|------|-----|
| Anode voltage                        | Va              | max.   | 12   | kV  |
| Grid 2 voltage                       | V <sub>g2</sub> | max.   | 1200 | V   |
| Grid 1 voltage                       | $-V_{g1}$       | max.   | 500  | V   |
| Anode current                        | la              | max.   | 8    | A   |
| Anode dissipation                    | Wa              | max.   | 30   | kW  |
| Grid 2 dissipation                   | W <sub>g2</sub> | max.   | 400  | W   |
| Grid 1 dissipation                   | W <sub>g1</sub> | max.   | 300  | W   |
| Cathode current                      | I <sub>k</sub>  | max.   | 9    | А   |
| OPERATING CONDITIONS (grounded grid) |                 |        |      |     |
| Frequency                            | f               |        | 200  | MHz |
| Anode voltage                        | Va              |        | 10   | kV  |
| Grid 2 voltage                       | V <sub>g2</sub> |        | 900  | V   |
| Grid 1 voltage                       | V <sub>g1</sub> | ~      | -90  | v ' |
| Anode current, no-signal condition   | la              |        | 1,0  | А   |
| Anode current                        | la              |        | 5,9  | А   |
| Grid 2 current                       | l <sub>g2</sub> |        | 190  | mA  |
| Grid 1 current                       | lg1             |        | 370  | mA  |
| Output power in load                 | We              | $\geq$ | 35   | kW  |
| Driving power                        | Wdr             |        | 850  | W   |
| Gain                                 | G               |        | 16   | dB  |
|                                      |                 |        |      |     |

\* To be adjusted for the stated no-signal anode current.



Mullard

September 1984

M84-1822/Y

## WATER COOLED 50 kW POWER TETRODE

Water cooled coaxial power tetrode in metal-ceramic construction primarily intended for use in R.F. power amplifier applications up to 100 MHz.

#### QUICK REFERENCE DATA

| Class-B amplifier (C.W.)                                  |                              |      |                 |                   |
|-----------------------------------------------------------|------------------------------|------|-----------------|-------------------|
| Frequency                                                 | f                            |      | 100             | MHz               |
| Anode voltage                                             | Va                           |      | 12              | kV                |
| Anode output power                                        | w                            |      | 50              | kW                |
| Power gain                                                | G                            |      | 16              | dB                |
| HEATING: direct; thoriated tungsten filament, mesh type.  | 20410                        |      | 1.00            | 0.000             |
| Filament voltage                                          | Vf                           |      | 7,5             | $v^{+1\%}_{-3\%}$ |
| Filament current                                          | ۱ <sub>f</sub>               |      | 180             | A                 |
| Filament peak starting current                            | I <sub>fp</sub>              | max. | 1000            | А                 |
| Cold filament resistance                                  | R <sub>fo</sub>              |      | 4,2             | mΩ                |
| Waiting time                                              | tw                           | min. | 1               | s                 |
| TYPICAL CHARACTERISTICS                                   |                              |      |                 |                   |
| Anode voltage                                             | Va                           |      | 10              | kV                |
| Grid 2 voltage                                            | V <sub>g2</sub>              |      | 900             | V                 |
| Anode current<br>Transconductance<br>Amplification factor | l <sub>a</sub><br>S<br>μg2g1 | ≈    | 2,4<br>70<br>10 | A<br>mA/V         |
| CAPACITANCES, grounded grid                               |                              | ç    | ground          | led grid          |
| Input                                                     | Ci                           |      | 86              | pF                |
| Output                                                    | Co                           |      | 29              | pF                |
| Anode to filament                                         | Caf                          | <    | 0,3             | pF                |
| TEMPERATURE LIMITS                                        |                              |      |                 |                   |
| Absolute maximum envelope temperature                     | Tenv                         | max. | 240             | oC                |
| Recommended maximum seal temperature                      | т                            | max. | 200             | oC                |

9397 032 10422

#### COOLING

| W <sub>a</sub> | ⊤ <sub>i</sub> | q     | pi  | T <sub>o</sub> |
|----------------|----------------|-------|-----|----------------|
| kW             | ∘c             | I/min | kPa | oC             |
| 30             | 20             | 21    | 34  | 42             |
|                | 50             | 32    | 71  | 64             |
| 20             | 20             | 14    | 17  | 43             |
|                | 50             | 20    | 31  | 66             |

Absolute maximum water inlet temperature

Absolute maximum water pressure

Mullard

The temperature of the seals and envelope should be kept well below 200 °C.

An air flow of about 1 m<sup>3</sup>/min must be ducted along the seals from a 30 mm diameter nozzle positioned at a distance of 200 mm from the tube header.

#### MECHANICAL DATA

Net mass

Mounting position

vertical with anode up or down.

7 kg



(the slot 7x14 (8x) for bolt M6 0 0

136

1.5

50 °C Ti 600 kPa р

Water cooled 50 kW power tetrode

### YL1531

#### R.F. CLASS-B POWER AMPLIFIER

Unless otherwise stated, the voltages are given with respect to the cathode.

#### LIMITING VALUES (Absolute maximum rating system)

| Frequency                            | f               | up to | 250  | MHz |
|--------------------------------------|-----------------|-------|------|-----|
| Anode voltage                        | Va              | max.  | 14   | kV  |
| Grid 2 voltage                       | V <sub>g2</sub> | max.  | 1200 | V   |
| Grid 1 voltage                       | $-V_{g1}$       | max.  | 500  | V   |
| Anode current                        | la              | max.  | 8    | А   |
| Anode dissipation                    | Wa              | max.  | 30   | kW  |
| Grid 2 dissipation                   | W <sub>g2</sub> | max.  | 400  | W   |
| Grid 1 dissipation                   | W <sub>g1</sub> | max.  | 300  | W   |
| Cathode current                      | l <sub>k</sub>  | max.  | 9    | А   |
| OPERATING CONDITIONS (grounded grid) |                 |       |      |     |
| Frequency                            | f               |       | 100  | MHz |
| Anode voltage                        | Va              |       | 12   | kV  |
| Grid 2 voltage                       | V <sub>g2</sub> |       | 900  | V   |
| Grid 1 voltage                       | V <sub>g1</sub> | ~     | -110 | V * |
| Anode current, no-signal condition   | la              |       | 0,5  | А   |
| Anode current                        | la              |       | 6    | А   |
| Grid 2 current                       | Ig2             |       | 190  | mA  |
| Grid 1 current                       | lg1             |       | 800  | mA  |
| Anode output power                   | W               |       | 50   | kW  |
| Driving power                        | Wdr             |       | 1250 | W   |
| Gain                                 | G               |       | 16   | dB  |
|                                      |                 |       |      |     |

\* To be adjusted for the stated no-signal anode current.



## AIR COOLED V.H.F. POWER TETRODE

for grounded cathode operation

Forced air cooled coaxial power tetrode in metal-ceramic construction primarily intended for use as grid-driven linear amplifier for single sideband, suppressed carrier service and grid-driven broadband amplifier with high power gain in TV band I and III transmitters and transposers. The type is also very suitable for f.m. broadcast applications. The electrode arrangement is specially designed for grounded cathode operation.

| QUICK | REFERENCE DAT | 4 |
|-------|---------------|---|
|       |               |   |

| Class-AB linear amplifier (vision)                      |                 |       |        |                       |
|---------------------------------------------------------|-----------------|-------|--------|-----------------------|
| Frequency                                               | f               |       | 175,25 | MHz                   |
| Anode voltage                                           | Va              |       | 3      | kV                    |
| Output power in load (sync)                             | Wo              |       | 1,1    | kW                    |
| Power gain                                              | G               |       | 20     | dB                    |
| Class-AB f.m. amplifier                                 |                 |       |        |                       |
| Frequency                                               | f               | up to | 260    | MHz                   |
| Anode voltage                                           | Va              |       | 4      | kV                    |
| Output power in load                                    | Wg              |       | 2,2    | kW                    |
| Power gain                                              | G               |       | 22     | dB                    |
| HEATING: direct; thoriated tungsten filament, mesh type |                 |       |        |                       |
| Filament voltage                                        | Vf              |       | 4,2    | $V + \frac{1\%}{2\%}$ |
| Filament current                                        | l <sub>f</sub>  |       | 53     | -3%<br>A              |
| Filament peak starting current                          | Ifp             | max.  | 300    | A                     |
| Cold filament resistance                                | R <sub>fo</sub> |       | 8,5    | mΩ                    |
| Waiting time                                            | tw              | min.  | 1      | S                     |
| TYPICAL CHARACTERISTICS                                 |                 |       |        |                       |
| Anode voltage                                           | Va              |       | 3      | kV                    |
| Grid 2 voltage                                          | Vaz             |       | 700    | V                     |
| Anode current                                           | 1 <sub>2</sub>  |       | 500    | mA                    |
| Transconductance                                        | S               |       | 25     | mA/V                  |
| Amplification factor                                    | $\mu_q 2_q 1$   |       | 10     |                       |

orange binder, tab 7

CAPACITANCES grounded cathode Ci 54 pF Input Co 8 pF Output Caq1 0,1 pF Anode to grid 1 **TEMPERATURE LIMITS** 240 °C Absolute maximum envelope temperature Tenv max. 200 °C Recommended maximum seal temperature т max.

#### COOLING

Direction of airflow: see drawing

| - | W <sub>a</sub> +W <sub>g</sub> | h    | T <sub>i</sub> | 9min   | Pi  | T <sub>o</sub> max. |
|---|--------------------------------|------|----------------|--------|-----|---------------------|
|   | W                              | m    | oC             | m³/min | Pa  | <sup>o</sup> C      |
|   | 2000                           | 0    | 35             | 2,00   | 530 | 92                  |
|   | 1500                           | 0    | 35             | 1,30   | 280 | 103                 |
|   | 1000                           | 0    | 35             | 0,80   | 140 | 113                 |
|   | 2000                           | 0    | 55             | 2,40   | 670 | 107                 |
|   | 1500                           | 0    | 55             | 1,55   | 340 | 118                 |
|   | 1000                           | 0    | 55             | 0,95   | 180 | 127                 |
|   | 2000                           | 1500 | 35             | 2,58   | 670 | 89                  |
|   | 1500                           | 1500 | 35             | 1,68   | 340 | 99                  |
|   | 1000                           | 1500 | 35             | 1,03   | 180 | 109                 |
|   | 2000                           | 3000 | 25             | 2,78   | 690 | 81                  |
|   | 1500                           | 3000 | 25             | 1,80   | 350 | 91                  |
|   | 1000                           | 3000 | 25             | 1,11   | 190 | 101                 |

The air should be ducted so that sufficient air is directed to the seals to keep the seal temperature below the limit.

#### ACCESSORIES

| Band III | amplifier circuit assembly (vision) | type 40776 |
|----------|-------------------------------------|------------|
| Band III | amplifier circuit assembly (sound)  | type 40777 |
| Band II  | amplifier circuit assembly (sound)  | type 40778 |

2

#### MECHANICAL DATA

Dimensions in mm

Net mass: 0,55 kg Mounting position: vertical with anode up or down



(1) Tube extractor type 40750; catalogue number 7322 120 02140.

#### RF CLASS-AB LINEAR AMPLIFIER FOR TELEVISION SERVICE

Negative modulation, positive synchronization (C.C.I.R. system). Unless otherwise specified the voltages are given with respect to the cathode.

| LIMITING VALUES (Absolute maximum rating system) |                                    |                      |          |       |   |
|--------------------------------------------------|------------------------------------|----------------------|----------|-------|---|
|                                                  | Frequency                          | f                    | up to 26 | 0 MHz |   |
|                                                  | Anode voltage                      | Va                   | max. 4   | ,2 kV |   |
|                                                  | Grid 2 voltage                     | V <sub>g2</sub>      | max. 75  | 0 V   |   |
|                                                  | Grid 1 voltage                     | $-V_{q1}$            | max. 10  | 0 V   |   |
|                                                  | Anode current, black               | la                   | max. 1   | 2 A   |   |
|                                                  | Anode input power, black           | Wia                  | max.     | 4 kW  |   |
|                                                  | Anode dissipation                  | Wa                   | max.     | 2 kW  |   |
|                                                  | Grid 2 dissipation                 | W <sub>g2</sub>      | max. 7   | '0 W  |   |
|                                                  | Grid 1 dissipation                 | Wg1                  | max. 3   | W 0   |   |
|                                                  | Cathode current                    | I <sub>k</sub>       | max. 1   | 5 A   |   |
|                                                  | Grid 1 circuit resistance          | R <sub>g1</sub>      | max. 1   | 0 kΩ  |   |
|                                                  | OPERATING CONDITIONS grid driven   |                      |          |       | 4 |
|                                                  | Frequency of vision carrier        | f                    | 175,2    | 5 MHz |   |
|                                                  | Bandwidth (-1 dB)                  | В                    |          | 7 MHz | 1 |
|                                                  | Anode voltage                      | Va                   |          | 3 kV  |   |
|                                                  | Grid 2 voltage                     | V <sub>g2</sub>      | 70       | 0 V   |   |
|                                                  | Grid 1 voltage                     | V <sub>g1</sub>      | -5       | 5 V   | 2 |
|                                                  | Anode current, no-signal condition | la                   | 30       | 0 mA  |   |
|                                                  | Anode current, black               | la black             | 65       | 0 mA  | 3 |
|                                                  | Grid 2 current, black              | Ig2 black            | 2        | 0 mA  | 3 |
|                                                  | Grid 1 current, black              | Ig1 black            |          | 0 mA  | 3 |
|                                                  | Output power in load, sync         | W <sub>l sync</sub>  | 110      | W 0   |   |
|                                                  | Output power in load, black        | Wg black             | 66       | 0 W   | 3 |
|                                                  | Anode dissipation, black           | Wa black             | ≈ 120    | W 0   |   |
|                                                  | Gain, sync                         | G <sub>sync</sub>    | 2        | 0 dB  |   |
|                                                  | Gain, black                        | G <sub>black</sub>   | 2        | 0 dB  |   |
|                                                  | Sync compression                   | sync in/out          | 25/2     | 5     | 6 |
|                                                  | Differential phase                 |                      | <        | 3 deg | 7 |
|                                                  | Differential gain                  |                      | ≥9       | 0 %   | 7 |
|                                                  | L.F. linearity                     |                      | ≥ 9      | 0 %   | 7 |
|                                                  | Driving power sync                 | W <sub>dr sync</sub> | 1        | 1 W   |   |

Notes: see page 5

Septe

4

-

September 1984

## Mullard

|  | CLASS-AB | F.M. | AMPL | IFIER |
|--|----------|------|------|-------|
|--|----------|------|------|-------|

| LIMITING VALUES (Absolute maximum rat | ting system)    |                 |       |      |     | notes |
|---------------------------------------|-----------------|-----------------|-------|------|-----|-------|
| Frequency                             |                 | f               | up to | 260  | MHz |       |
| Anode voltage                         |                 | Va              | max.  | 4,2  | kV  |       |
| Grid 2 voltage                        |                 | V <sub>a2</sub> | max.  | 750  | V   |       |
| Grid 1 voltage                        |                 | $-V_{q1}$       | max.  | 100  | V   |       |
| Anode current, black                  |                 | la              | max.  | 1,2  | A   |       |
| Anode input power, black              |                 | Wia             | max.  | 4    | kW  |       |
| Anode dissipation                     |                 | Wa              | max.  | 2    | kW  |       |
| Grid 2 dissipation                    |                 | W <sub>g2</sub> | max.  | 70   | W   |       |
| Grid 1 dissipation                    |                 | W <sub>g1</sub> | max.  | 30   | W   |       |
| Cathode current                       |                 | I <sub>k</sub>  | max.  | 1,5  | А   |       |
| Grid 1 circuit resistance             |                 | R <sub>g1</sub> | max.  | 10   | kΩ  |       |
| OPERATING CONDITIONS grid driven      |                 |                 |       |      |     | 5     |
| Frequency                             | f               |                 | 80 to | 230  | MHz |       |
| Anode voltage                         | Va              | 3               |       | 4    | kV  |       |
| Grid 2 voltage                        | V <sub>g2</sub> | 700             |       | 700  | V   |       |
| Grid 1 voltage                        | V <sub>g1</sub> | -60             |       | -60  | V   | 2     |
| Anode current, no-signal condition    | la              | 200             |       | 200  | mA  |       |
| Anode current                         | la              | 700             |       | 900  | mA  |       |
| Grid 2 current                        | l <sub>g2</sub> | 30              |       | 60   | mA  |       |
| Grid 1 current                        | lg1             | 10              |       | 20   | mA  |       |
| Anode input power                     | Wia             | 2,1             |       | 3,6  | kW  |       |
| Anode dissipation                     | Wa              | 1,1             |       | 1,6  | kW  |       |
| Output power in load                  | We              | 1,1             |       | 2,2  | kW  |       |
| Power gain                            | G               | 22,5            |       | 22,5 | dB  |       |
| Driving power                         | Wdr             | 6               |       | 12   | W   |       |

#### Notes

1. With double-tuned circuit.

2. To be adjusted for the stated no-signal anode current.

- 3. Black signal including line sync pulses.
- 4. Measured in amplifier circuit assembly type 40776.
- 5. Measured in amplifier circuit assembly types 40778 (band II) and 40777 band III respectively.
- A picture/sync ratio of 75/25 for the outgoing signal requires a ratio of max. 70/30 for the incoming signal in which case the sync compression sync in/out = 30/25.
- 7. Measured with 10-step staircase amplitude, running from 17% to 75% of the peak sync value, with a superimposed 4,43 MHz sinewave with a 10% peak to peak value.







6

Mullard

M84-1823/Y





## AIR-COOLED R.F. POWER TETRODE

Forced air-cooled coaxial power tetrode in metal-ceramic construction primarily intended for use as grid-driven linear amplifier for single sideband, suppressed carrier service.

#### QUICK REFERENCE DATA

| Class-AB1 linear SSB amplifier                          |                     |         |                                              |
|---------------------------------------------------------|---------------------|---------|----------------------------------------------|
| Frequency                                               | f                   | 1 to 30 | MHz                                          |
| Anode voltage                                           | Va                  | 4       | kV                                           |
| Output power in load                                    | WI                  | 2100    | W                                            |
| Power gain                                              | G                   | 23      | dB                                           |
| HEATING: direct; thoriated tungsten filament, mesh type |                     |         |                                              |
| Filament voltage                                        | Vf                  | 4,2     | V <sup>+1%</sup> <sub>−3%</sub> <del>-</del> |
| Filament current                                        | ١ <sub>f</sub>      | 53      | A                                            |
| Filament peak starting current                          | I <sub>fp</sub> max | 300     | A                                            |
| Cold filament resistance                                | Rfo                 | 8,5     | rnΩ                                          |
| Waiting time                                            | t <sub>w</sub> min  | 1       | S                                            |
|                                                         |                     |         |                                              |
| TYPICAL CHARACTERISTICS                                 |                     |         |                                              |
| Anode voltage                                           | Va                  | 3       | kV                                           |
| Grid 2 voltage                                          | V <sub>q2</sub>     | 700     | V                                            |
| Anode current                                           | la                  | 500     | mA                                           |
| Transconductance                                        | S                   | 25      | mA/V                                         |
| Amplification factor                                    | µg2g1               | 10      |                                              |
| CAPACITANCES                                            |                     |         |                                              |
| Input                                                   | Ci                  | 54      | pF                                           |
| Output                                                  | Co                  | 8       | pF                                           |
| Anode to grid 1                                         | Cag 1               | 0,1     | pF                                           |
|                                                         | - 9                 |         |                                              |

## Mullard

#### TEMPERATURE LIMITS

| Absolute maximum envelope temperature | Tenv | max. | 240 °C |
|---------------------------------------|------|------|--------|
| Recommended maximum seal temperature  | Т    | max. | 200 °C |

#### COOLING

Direction of air flow: see drawing.

| $W_a + W_g$ | h                                                                                    | Ti                                                                                                                                                                                                                                                                                                             | qmin                                                                                                                                                                                            | pi                                                     | T <sub>o max</sub>                                     |
|-------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| W           | m                                                                                    | °C                                                                                                                                                                                                                                                                                                             | m <sup>3</sup> /min                                                                                                                                                                             | Pa                                                     | oC                                                     |
| 2000        | 0                                                                                    | 35                                                                                                                                                                                                                                                                                                             | 2,00                                                                                                                                                                                            | 530                                                    | 92                                                     |
| 1500        | 0                                                                                    | 35                                                                                                                                                                                                                                                                                                             | 1,30                                                                                                                                                                                            | 280                                                    | 103                                                    |
| 1000        | 0                                                                                    | 35                                                                                                                                                                                                                                                                                                             | 0,80                                                                                                                                                                                            | 140                                                    | 113                                                    |
| 2000        | 0                                                                                    | 55                                                                                                                                                                                                                                                                                                             | 2,40                                                                                                                                                                                            | 670                                                    | 107                                                    |
| 1500        | 0                                                                                    | 55                                                                                                                                                                                                                                                                                                             | 1,55                                                                                                                                                                                            | 340                                                    | 118                                                    |
| 1000        | 0                                                                                    | 55                                                                                                                                                                                                                                                                                                             | 0,95                                                                                                                                                                                            | 180                                                    | 127                                                    |
|             | W <sub>a</sub> + W <sub>g</sub><br>W<br>2000<br>1500<br>1000<br>2000<br>1500<br>1000 | Wa + Wg<br>W         h<br>m           2000         0           1500         0           1000         0           2000         0           1500         0           1000         0           2000         0           1500         0           1500         0           1500         0           1000         0 | $\begin{array}{c cccc} W_a + W_g & h & T_i \\ W & m & ^{OC} \\ \hline 2000 & 0 & 35 \\ 1500 & 0 & 35 \\ 1000 & 0 & 35 \\ 2000 & 0 & 55 \\ 1500 & 0 & 55 \\ 1000 & 0 & 55 \\ \hline \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

The air should be ducted so that sufficient air is directed to the seals.

#### ACCESSORIES

A drawing of the recommended socket construction is available on request.

2

## Mullard

#### MECHANICAL DATA

Dimensions in mm

Net mass: 0,55 kg Mounting position: vertical with anode up or down



#### R.F. CLASS-AB LINEAR AMPLIFIER, SINGLE SIDEBAND, SUPPRESSED CARRIER

Unless otherwise specified the voltages are given with respect to the cathode.

LIMITING VALUES (Absolute maximum rating system)

|   | Frequency                        |                  |        | f                | up to 110  | MHz |   |
|---|----------------------------------|------------------|--------|------------------|------------|-----|---|
| - | Anode voltage                    |                  |        | Va               | max 4.4    | kV  |   |
|   | Grid 2 voltage                   |                  |        | Va2              | max 750    | V   |   |
|   | Grid 1 voltage                   |                  |        | -Va1             | max 100    | V   |   |
|   | Anode current                    |                  |        | la               | max 1.2    | A   |   |
|   | Cathode current                  |                  |        | lk               | max 1.5    | A   |   |
|   | Anode input power                |                  |        | Wia              | max 4      | kW  |   |
|   | Anode dissipation                |                  |        | Wa               | max 2      | kW  |   |
|   | Grid 2 dissipation               |                  |        | W <sub>q</sub> 2 | max 70     | W   |   |
|   | Grid 1 dissipation               |                  |        | Wa1              | max 30     | W   |   |
|   | Grid 1 circuit resistance        |                  |        | R <sub>g1</sub>  | max 10     | kΩ  |   |
|   | OPERATING CONDITIONS             |                  |        |                  |            |     |   |
|   | Frequency                        | f                |        | 30               |            | MHz |   |
|   | Anode voltage                    | Va               |        | 4                |            | kV  |   |
|   | Grid 2 voltage                   | V <sub>a</sub> 2 |        | 700              |            | V   |   |
|   | Grid 1 voltage                   | V <sub>a1</sub>  |        | ~-67             |            | V   | 1 |
|   | Grid 1 circuit resistance (load) | R <sub>a</sub> 1 |        | 1                |            | kΩ  |   |
|   | Load resistance                  | R <sub>a</sub> ~ |        | 2500             |            | Ω   |   |
|   |                                  |                  | zero   | single tone      | double tor | ne  |   |
|   | Crid 1 driving valtage           | N/               | signal | signal           | signal     | N   |   |
|   |                                  | vg1p             | 200    | 000              | 50         | V   |   |
|   | Anode current                    | la               | 200    | 900              | 550        | mA  |   |
|   | Grid 2 current                   | lg2              | 0      | 90               | 34         | mA  |   |
|   | Grid I current                   | lg1              | 0      | 20               | 1,5        | mA  | 2 |
|   | Driving power (PEP)              | Wdr              | 0      | 01               | 10         | VV  | 2 |
|   | Anode input power                | wia              | 800    | 3600             | 2200       | VV  |   |
|   | Anode dissipation                | wa               | 800    | 1500             | 1150       | VV  |   |
|   | Power gain                       | G                |        | 2100             | 23         | a B |   |
|   | Output in load                   | VV I             | _      | 2100             | 2100       | vv  |   |
|   | Total afficiency                 | vv               | _      | -                | 2100       | VV  |   |
|   | I otal efficiency                | η                | _      | 58,5             | 48         | 70  |   |
|   | and order                        | 40               |        |                  | < 20       | - D | 2 |
|   | Stu order                        | a3               | _      | _                | < -30      | aB  | 3 |
|   | Striorder                        | a5               | -      | -                | < -35      | aB  | 3 |

Mullard

Notes: see page 5

4

## U

notes

----

|                                  |                 |                |                       |                      |     | notes |   |
|----------------------------------|-----------------|----------------|-----------------------|----------------------|-----|-------|---|
| Frequency                        | f               |                | 30                    |                      | MHz |       |   |
| Anode voltage                    | Va              |                | 3                     |                      | kV  |       |   |
| Grid 2 voltage                   | Vg2             |                | 700                   |                      | V   |       |   |
| Grid 1 voltage                   | Vg1             |                | $\approx -66$         |                      | V   | 1     | - |
| Grid 1 circuit resistance (load) | R <sub>g1</sub> |                | 1                     |                      | kΩ  |       |   |
| Load resistance                  | $R_{a} \sim$    |                | 1500                  |                      | Ω   |       |   |
|                                  |                 | zero<br>signal | single tone<br>signal | double ton<br>signal | e   |       |   |
| Grid 1 driving voltage           | Vg1 p           | 0              | 75                    | 75                   | V   |       |   |
| Anode current                    | la              | 200            | 800                   | 500                  | mA  |       |   |
| Grid 2 current                   | lg2             | 0              | 90                    | 40                   | mA  |       |   |
| Grid 1 current                   | lg1             | 0              | 10                    | 1                    | mA  |       |   |
| Driving power (PEP)              | Wdr             | 0              | 10                    | 10                   | W   | 2     |   |
| Anode input power                | Wia             | 600            | 2400                  | 1500                 | W   |       |   |
| Anode dissipation                | Wa              | 600            | 800                   | 700                  | W   |       |   |
| Power gain                       | G               | _              | -                     | 22                   | dB  |       |   |
| Output power in load             | WI              | -              | 1600                  | -                    | W   |       |   |
| Output power in load (PEP)       | WI              | -              | -                     | 1600                 | W   |       |   |
| Total efficiency                 | $\eta$          | —              | 66                    | 53                   | %   |       |   |
| Intermodulation distortion       |                 |                |                       |                      |     |       |   |
| 3rd order                        | d3              | -              | -                     | -30                  | dB  | 3     |   |
| 5th order                        | d5              | -              | -                     | -30                  | dB  | 3     |   |
|                                  |                 |                |                       |                      |     |       |   |

#### Notes

- 1. To be adjusted for the stated no-signal anode current.
- 2. Design value for output power of driver stage.
- Maximum values encountered at any level of drive voltage referred to the amplitude of either of the two equal tones at that level.





Mullard

6

M84-1824/Y



## AIR COOLED U.H.F. POWER TETRODE

Forced-air cooled coaxial power tetrode in metal-ceramic construction. The tube features a high gain and a high linearity and is primarily intended for use as linear broadband amplifier in band IV/V TV transmitters and transposers.

#### QUICK REFERENCE DATA

| Class-AB linear amplifier                                                                                                                          |                                                            |                             |                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|--------------------------------------------|
| Frequency                                                                                                                                          | f                                                          | 860                         | MHz                                        |
| Anode voltage                                                                                                                                      | Va                                                         | 5,5                         | kV                                         |
| Output power in load, sync                                                                                                                         | Wg(sync)                                                   | 5,5                         | kW                                         |
| Power gain                                                                                                                                         | G                                                          | 16,5                        | dB                                         |
| TV transposer service                                                                                                                              |                                                            |                             |                                            |
| Frequency                                                                                                                                          | f                                                          | 470 to 860                  | MHz                                        |
| Anode voltage                                                                                                                                      | Va                                                         | 5,0                         | kV                                         |
| Output power in load, sync                                                                                                                         | W <sub>ℓ(sync)</sub>                                       | 2,2                         | kW                                         |
| Power gain                                                                                                                                         | G                                                          | 16,5                        | dB                                         |
| HEATING: direct; thoriated tungsten filament<br>Filament voltage<br>Filament current<br>Filament peak starting current<br>Cold filament resistance | V <sub>f</sub><br>I <sub>f</sub><br>I <sub>fp</sub><br>Bfo | 5<br>130<br>max. 800<br>4.5 | $V^{+1\%}_{-3\%}$<br>A<br>A<br>M<br>M<br>M |
| Waiting time                                                                                                                                       | t <sub>w</sub>                                             | min. 1                      | S                                          |
| TYPICAL CHARACTERISTICS                                                                                                                            |                                                            |                             |                                            |
| Anode voltage                                                                                                                                      | Va                                                         | 2                           | 2 kV                                       |
| Grid 2 voltage                                                                                                                                     | V <sub>g2</sub>                                            | 700                         | $\vee$                                     |
| Anode current                                                                                                                                      | la                                                         | e                           | βA                                         |
| Transconductance                                                                                                                                   | S                                                          | 140                         | ) mA/V                                     |
| Amplification factor                                                                                                                               | <sup>μ</sup> g2g1                                          | 8                           | 3                                          |

5

Mullard

September 1984

CAPACITANCES, grounded-grid

| Input                                 | Ci   |   | 62 pF  |
|---------------------------------------|------|---|--------|
| Output                                | Co   |   | 13 pF  |
| Anode to filament                     | Caf  | < | 0,1 pF |
| TEMPERATURE LIMITS                    |      |   |        |
| Absolute maximum envelope temperature | Tenv |   | 240 °C |
| Recommended maximum seal temperature  | Τs   |   | 200 °C |

#### --- COOLING

| $W_a + W_g$<br>kW | h<br>m | Ti<br>⁰C | <sup>q</sup> min<br>m³/min | tube<br>only | Pi<br>Pa<br>tube +<br>cavity | T <sub>o</sub> max.<br>°C |
|-------------------|--------|----------|----------------------------|--------------|------------------------------|---------------------------|
| 7                 | 0      | 35       | 7,5                        | 660          | 1240                         | 88                        |
| 5                 | 0      | 35       | 5,0                        | 330          | 620                          | 94                        |
| 7                 | 0      | 55       | 9,3                        | 860          | 1700                         | 101                       |
| 5                 |        | 55       | 6,2                        | 430          | 850                          | 106                       |
| 7                 | 1500   | 35       | 9,0                        | 800          | 1450                         | 88                        |
| 5                 | 1500   | 35       | 6,0                        | 400          | 730                          | 96                        |
| 7                 | 3000   | 25       | 9,6                        | 800          | 1450                         | 83                        |
| 5                 | 3000   | 25       | 6,4                        | 400          | 730                          | 90                        |

The air should be ducted so that sufficient air is directed to the seals to keep the seal temperature below the limit.

For direction of air flow see outline drawing. The air should be ducted so that sufficient air is directed to the seals to keep the seal temperature below the limit.

2



Fig. 1 Schematic of cooling air flow.

#### ACCESSORIES

Band IV/V amplifier circuit assembly type 40783.



#### MECHANICAL DATA

Dimensions in mm

Net mass:  $\approx$  3,5 kg

Mounting position: vertical with anode up or down



Fig. 2.

4

## Mullard

J

YL1560

-----

#### R.F. CLASS-AB LINEAR AMPLIFIER FOR TELEVISION SERVICE

(Detailed information on definitions of terms and application suggestions are available on request.)

Negative modulation, positive synchronization (CCIR system).

Unless otherwise stated, the voltages are given with respect to the cathode.

#### LIMITING VALUES (Absolute maximum rating system)

|                          |                       |       |      |     | notes |
|--------------------------|-----------------------|-------|------|-----|-------|
| Frequency                | f                     | up to | 1000 | MHz |       |
| Anode voltage            | Va                    | max.  | 6    | kV  |       |
| Grid 2 voltage           | V <sub>q2</sub>       | max.  | 1000 | V   |       |
| Grid 1 voltage           | -V <sub>q1</sub>      | max.  | 200  | V   |       |
| Anode current, black     | l <sub>a black</sub>  | max.  | 2,5  | А   |       |
| Anode input power, black | W <sub>ia black</sub> | max.  | 10   | kW  |       |
| Anode dissipation        | Wa                    | max.  | 7    | kW  |       |
| Grid 2 dissipation       | W <sub>q2</sub>       | max.  | 100  | w   |       |
| Grid 1 dissipation       | W <sub>q1</sub>       | max.  | 50   | W   |       |
| Cathode current          | 1 <sub>k</sub>        | max.  | 4    | A   |       |

OPERATING CONDITIONS, grounded grid, grounded screen grid

| Frequency of vision carrier        | f                    |             | 470 to 860 | MHz |   |  |
|------------------------------------|----------------------|-------------|------------|-----|---|--|
| Bandwidth (-1 dB)                  | В                    |             | 10         | MHz | 1 |  |
| Anode voltage                      | Va                   |             | 5,5        | kV  |   |  |
| Grid 2 voltage                     | V <sub>g2</sub>      |             | 700        | V   |   |  |
| Grid 1 voltage                     | V <sub>g1</sub>      |             | -65        | V   | 2 |  |
| Anode current, no signal condition | la                   |             | 1,0        | A   |   |  |
| Anode current, black               | la black             |             | 1,9        | A   | 3 |  |
| Grid 2 current, black              | Ig2 black            | ~           | 30         | mA  | 3 |  |
| Grid 1 current, black              | Ig1 black            | ~           | 0          | mA  | 3 |  |
| Output power in load, sync         | Wesync               |             | 5,5        | kW  |   |  |
| Output power in load, black        | W <sub>l</sub> black |             | 3,3        | kW  | 3 |  |
| Anode dissipation, black           | W <sub>a black</sub> | ~           | 6,8        | kW  |   |  |
| Power gain, sync                   | G <sub>sync</sub>    |             | 16,5       | dB  |   |  |
| Power gain, black                  | G <sub>black</sub>   |             | 17         | dB  |   |  |
| Sync compression                   | sync in/out          |             | 30/25      |     | 4 |  |
| Differential phase                 |                      | ~           | 4          | deg | 5 |  |
| Differential gain                  |                      | $\geqslant$ | 92         | %   | 5 |  |
| L.F. linearity                     |                      | $\geq$      | 92         | %   | 5 |  |
| Driving power, sync                | W <sub>dr sync</sub> |             | 125        | W   |   |  |
|                                    |                      |             |            |     |   |  |

Notes: see page 6

## R.F. CLASS-AB AMPLIFIER FOR TELEVISION TRANSPOSER SERVICE

#### LIMITING VALUES

Unless otherwise stated, the voltages are given with respect to the cathode.

| Frequency               | f               | up to | 1000 | MHz |
|-------------------------|-----------------|-------|------|-----|
| Anode voltage           | Va              | max.  | 6    | kV  |
| Grid 2 voltage          | V <sub>g2</sub> | max.  | 1000 | V   |
| Grid 1 voltage          | $-V_{q1}$       | max.  | 200  | V   |
| Anode current, 0 dB     | l <sub>a</sub>  | max.  | 2,5  | A   |
| Anode input power, 0 dB | Wia             | max.  | 10   | kW  |
| Anode dissipation       | Wa              | max.  | 7    | kW  |
| Grid 2 dissipation      | W <sub>g2</sub> | max.  | 100  | W   |
| - Grid 1 dissipation    | W <sub>g1</sub> | max.  | 50   | w   |
| Cathode current         | 1 <sub>k</sub>  | max.  | 4    | A   |

#### OPERATING CONDITIONS

Negative modulation, positive synchronization, combined sound and vision (CCIR standard G)

| A more statistic production statistic statistic |                 |          |     |     |   |
|-------------------------------------------------|-----------------|----------|-----|-----|---|
| Frequency                                       | f               | 470 to 8 | 860 | MHz |   |
| Bandwidth (-1 dB)                               | В               |          | 10  | MHz | 1 |
| Anode voltage                                   | Va              |          | 5,0 | kV  |   |
| Grid 2 voltage                                  | V <sub>g2</sub> | 2        | 700 | V   |   |
| Grid 1 voltage                                  | V <sub>g1</sub> | -        | -60 | V   | 2 |
| Anode current, no-signal condition              | la              |          | 1,2 | А   |   |
| Anode current                                   | la              |          | 1,8 | A   | 6 |
| Grid 2 current                                  | lg2             | *        | 20  | mA  | 6 |
| Grid 1 current                                  | lg1             | ~        | 0   | mA  | 6 |
| Output power in load, sync                      | Wesync          |          | 2,2 | kW  |   |
| Power gain                                      | G               | 1        | 6,5 | dB  |   |
| Intermodulation products                        | d               |          | -54 | dB  | 7 |
|                                                 |                 |          |     |     |   |

#### Notes

- 1. With double-tuned circuit.
- 2. To be adjusted for the stated no-signal anode current.
- 3. Black signal including line sync pulses.
- A picture/sync ratio of 75/25 for the outgoing signal requires a ratio of max. 70/30 for the incoming signal, in which case the sync compression is 30/25.
- Measured with a 9-step staircase amplitude, running from 17% to 75% of the peak sync value, with a superimposed 4,43 MHz sine-wave having a 10% peak-to-peak value.
- 6. At a C.W. output power = 2,2 kW.
- 7. Three-tone test method (vision carrier -8 dB, sound carrier -10 dB, sideband signal -16 dB with respect to peak sync = 0 dB).

Mullard



notes





Fig. 3.

Mullard



## AIR COOLED U.H.F. POWER, TETRODE

Forced-air cooled coaxial power tetrode in metal-ceramic construction. The tube features a high gain and a high linearity and is primarily intended for use as linear broadband amplifier in band IV/V TV transmitters and transposers.

#### QUICK REFERENCE DATA

| Class AB linear amplifiar                                                                                                                                                                                                 |                                                                                                            |              |                                                          |                                                                                                           |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                           | £                                                                                                          |              | 060                                                      | MLIZ                                                                                                      |   |
| Frequency                                                                                                                                                                                                                 | T                                                                                                          |              | 200                                                      |                                                                                                           |   |
| Anode voltage                                                                                                                                                                                                             | Va                                                                                                         |              | 3,5                                                      | KV                                                                                                        |   |
| Output power in load, sync                                                                                                                                                                                                | W <sub>ℓ</sub> (sync)                                                                                      |              | 600                                                      | W                                                                                                         |   |
| Power gain                                                                                                                                                                                                                | G                                                                                                          |              | 15,4                                                     | dB                                                                                                        |   |
| TV transposer service                                                                                                                                                                                                     |                                                                                                            |              |                                                          |                                                                                                           |   |
| Frequency                                                                                                                                                                                                                 | f                                                                                                          |              | 860                                                      | MHz                                                                                                       |   |
| Anode voltage                                                                                                                                                                                                             | Va                                                                                                         |              | 3,0                                                      | kÝ                                                                                                        |   |
| Output power in load, sync                                                                                                                                                                                                | W <sub>ℓ(sync)</sub>                                                                                       |              | 220                                                      | W                                                                                                         |   |
| Power gain                                                                                                                                                                                                                | G                                                                                                          |              | 15,6                                                     | dB                                                                                                        |   |
|                                                                                                                                                                                                                           |                                                                                                            |              |                                                          |                                                                                                           |   |
| Class-AB f.m. amplifier                                                                                                                                                                                                   | ,                                                                                                          |              | 000                                                      |                                                                                                           |   |
| Frequency                                                                                                                                                                                                                 | T                                                                                                          |              | 860                                                      | WHZ                                                                                                       |   |
| Anode voltage                                                                                                                                                                                                             | va                                                                                                         |              | 4,0                                                      | K V                                                                                                       |   |
| Output power in load                                                                                                                                                                                                      | We                                                                                                         |              | 1,1                                                      | KVV                                                                                                       |   |
| Power gain                                                                                                                                                                                                                | G                                                                                                          |              | 16,4                                                     | ав                                                                                                        |   |
| HEATING: direct; thoriated tungsten filament                                                                                                                                                                              |                                                                                                            |              |                                                          | 1 10/                                                                                                     |   |
| Filament voltage                                                                                                                                                                                                          | V.                                                                                                         |              | 30                                                       | V + 1%                                                                                                    | - |
| Thanient voltage                                                                                                                                                                                                          | vf                                                                                                         |              | 5,5                                                      | • -3%                                                                                                     |   |
| Filament current                                                                                                                                                                                                          | v₁<br>If                                                                                                   |              | 52                                                       | • -3%<br>A                                                                                                |   |
| Filament current<br>Filament peak starting current                                                                                                                                                                        | vf<br>I <sub>f</sub><br>I <sub>fp</sub>                                                                    | max.         | 52<br>300                                                | • -3%<br>A<br>A                                                                                           |   |
| Filament current<br>Filament peak starting current<br>Cold filament resistance                                                                                                                                            | v <sub>f</sub><br>I <sub>f</sub><br>I <sub>fp</sub><br>R <sub>fo</sub>                                     | max.         | 52<br>300<br>10                                          | <ul> <li>–3%</li> <li>A</li> <li>A</li> <li>mΩ</li> </ul>                                                 |   |
| Filament current<br>Filament peak starting current<br>Cold filament resistance<br>Waiting time                                                                                                                            | <sup>v</sup> f<br>I <sub>f</sub><br>I <sub>fp</sub><br>R <sub>fo</sub><br>t <sub>w</sub>                   | max.<br>min. | 52<br>300<br>10<br>1                                     | A<br>A<br>MΩ<br>S                                                                                         |   |
| Filament current<br>Filament peak starting current<br>Cold filament resistance<br>Waiting time                                                                                                                            | vf<br>I <sub>f</sub><br>I <sub>fp</sub><br>R <sub>fo</sub><br>t <sub>w</sub>                               | max.<br>min. | 52<br>300<br>10<br>1                                     | <ul> <li>-3%</li> <li>A</li> <li>A</li> <li>mΩ</li> <li>s</li> </ul>                                      |   |
| Filament current<br>Filament peak starting current<br>Cold filament resistance<br>Waiting time                                                                                                                            | <sup>v</sup> f<br><sup>I</sup> f<br><sup>I</sup> fp<br><sup>R</sup> fo<br><sup>t</sup> w                   | max.<br>min. | 5,9<br>52<br>300<br>10<br>1                              | <ul> <li>-3%</li> <li>A</li> <li>MΩ</li> <li>s</li> </ul>                                                 |   |
| Filament current<br>Filament peak starting current<br>Cold filament resistance<br>Waiting time<br>TYPICAL CHARACTERISTICS<br>Anode voltage                                                                                | v <sub>f</sub><br>I <sub>f</sub><br>I <sub>fp</sub><br>R <sub>fo</sub><br>t <sub>w</sub><br>V <sub>a</sub> | max.<br>min. | 3,3<br>52<br>300<br>10<br>1                              | × _3%<br>A<br>A<br>mΩ<br>s                                                                                |   |
| Filament current Filament peak starting current Cold filament resistance Waiting time TYPICAL CHARACTERISTICS Anode voltage Grid 2 voltage                                                                                | Vf<br>If<br>Ifp<br>Rfo<br>tw<br>Va<br>Va2                                                                  | max.<br>min. | 3,3<br>52<br>300<br>10<br>1<br>1<br>1<br>700             | A<br>A<br>mΩ<br>s<br>kV<br>V                                                                              |   |
| Filament current Filament peak starting current Cold filament resistance Waiting time TYPICAL CHARACTERISTICS Anode voltage Grid 2 voltage Anode current                                                                  | Vf<br>If<br>Ifp<br>Rfo<br>tw<br>Va<br>Vg2<br>Ia                                                            | max.<br>min. | 3,3<br>52<br>300<br>10<br>1<br>1<br>700<br>2             | <ul> <li>-3%</li> <li>A</li> <li>A</li> <li>mΩ</li> <li>s</li> <li>kV</li> <li>V</li> <li>A</li> </ul>    |   |
| Filament current Filament peak starting current Cold filament resistance Waiting time TYPICAL CHARACTERISTICS Anode voltage Grid 2 voltage Anode current Transconductance                                                 | Vf<br>If<br>Ifp<br>Rfo<br>tw<br>Va<br>Vg2<br>Ia<br>S                                                       | max.<br>min. | 3,3<br>52<br>300<br>10<br>1<br>1<br>700<br>2<br>60       | <ul> <li>-3%</li> <li>A</li> <li>MΩ</li> <li>s</li> <li>kV</li> <li>V</li> <li>A</li> <li>mA/V</li> </ul> |   |
| Filament current<br>Filament peak starting current<br>Cold filament resistance<br>Waiting time<br>TYPICAL CHARACTERISTICS<br>Anode voltage<br>Grid 2 voltage<br>Anode current<br>Transconductance<br>Amplification factor | Vf<br>If<br>Ifp<br>Rfo<br>tw<br>Va<br>Vg2<br>Ia<br>S<br>μg2g1                                              | max.<br>min. | 3,3<br>52<br>300<br>10<br>1<br>1<br>700<br>2<br>60<br>13 | A<br>A<br>mΩ<br>s<br>kV<br>V<br>A<br>mA/V                                                                 |   |

Mullard

September 1984

CAPACITANCES, grounded-grid

| Input                                 | Ci       |   | 26   | pF |
|---------------------------------------|----------|---|------|----|
| Output                                | Co       |   | 8,6  | pF |
| Anode to filament                     | $C_{af}$ | < | 0,05 | pF |
| TEMPERATURE LIMITS                    |          |   |      |    |
| Absolute maximum envelope temperature | Tenv     |   | 240  | °C |
| Recommended max. seal temperature     | Τs       |   | 200  | oC |

#### COOLING

| W <sub>a</sub> + W <sub>g</sub> | h    | T <sub>in</sub> | qmin<br>m³/min | Pi<br>Pa     |                  | Tout |
|---------------------------------|------|-----------------|----------------|--------------|------------------|------|
| kW                              | m    | °C              | see Fig. 1     | tube<br>only | tube +<br>cavity | °C   |
| 2                               | 0    | 35              | 2,5            | 450          | 600              | 79   |
| 2                               | 0    | 55              | 3,0            | 800          | 1000             | 86   |
| 2                               | 1500 | 35              | 3,0            | 550          | 720              | 79   |
| 2                               | 3000 | 25              | 3,3            | 550          | 720              | 77   |

For direction of air flow see outline drawing. The air should be ducted so that sufficient air is directed to the seals.

2



Fig. 1 Schematic of cooling air flow.

#### ACCESSORIES

Band IV/V amplifier circuit assembly (transposer), visiontype 40782VBand IV/V amplifier circuit assembly, soundtype 40782S
#### MECHANICAL DATA

Dimensions in mm

Net mass:  $\approx$  0,85 kg Mounting position: vertical with anode up or down



Fig. 2.

(1) Tube extractor type 40750; catalogue number 7322 120 02140.

4

notes

## R.F. CLASS-AB LINEAR AMPLIFIER FOR TELEVISION SERVICE

(Detailed information on definitions of terms and application suggestions are available on request.) Negative modulation, positive synchronization (CCIR system)

Unless otherwise stated, the voltages are given with respect to the cathode.

LIMITING VALUES (Absolute maximum rating system)

| Frequency                | f               | up to | 1000 | MHz |
|--------------------------|-----------------|-------|------|-----|
| Anode voltage            | Va              | max.  | 4    | kV  |
| Grid 2 voltage           | V <sub>g2</sub> | max.  | 800  | V   |
| Grid 1 voltage           | $-V_{g1}$       | max.  | 100  | V   |
| Anode current, black     | la black        | max.  | 700  | mA  |
| Anode input power, black | Wia black       | max.  | 2,5  | kW  |
| Anode dissipation        | Wa              | max.  | 2    | kW  |
| Grid 2 dissipation       | W <sub>q2</sub> | max.  | 25   | W   |
| Grid 1 dissipation       | W <sub>g1</sub> | max.  | 25   | W   |
| Cathode current          | l <sub>k</sub>  | max.  | 1    | А   |
|                          |                 |       |      |     |

OPERATING CONDITIONS, grounded grid, grounded screen grid

| Frequency of vision carrier        | f                    |           | 470 to 860 | MHz |   |
|------------------------------------|----------------------|-----------|------------|-----|---|
| Bandwidth (—1 dB)                  | В                    |           | 9          | MHz | 1 |
| Anode voltage                      | Va                   |           | 3,5        | kV  |   |
| Grid 2 voltage                     | V <sub>g2</sub>      |           | 700        | V   |   |
| Grid 1 voltage                     | V <sub>g1</sub>      | $\approx$ | -36        | V   | 2 |
| Anode current, no-signal condition | la                   |           | 400        | mA  |   |
| Anode current, black               | l <sub>a black</sub> | *         | 640        | mA  | 3 |
| Grid 2 current, black              | lg2 black            | $\approx$ | 7          | mA  | 3 |
| Grid 1 current, black              | Ig1 black            | ~         | 0          | mA  | 3 |
| Output power in load, sync         | W <sub>l</sub> sync  |           | 600        | W   |   |
| Output power in load, black        | W <sub>l</sub> black |           | 360        | W   | 3 |
| Anode dissipation, black           | Wa black             | $\approx$ | 1,8        | kW  |   |
| Power gain, sync                   | G <sub>sync</sub>    |           | 15,4       | dB  |   |
| Power gain, black                  | G <sub>black</sub>   |           | 15,6       | dB  |   |
| Sync compression                   | sync in/out          |           | 28/25      |     | 4 |
| Differential phase                 |                      | $\leq$    | 3          | deg | 5 |
| Differential gain                  |                      | $\geq$    | 90         | %   | 5 |
| L.F. linearity                     |                      |           | 90         | %   | 5 |
| Driving power, sync                | Wdrsync              |           | 18         | W   |   |
|                                    |                      |           |            |     |   |

## Mullard

5

### R.F. CLASS-AB AMPLIFIER FOR TELEVISION TRANSPOSER SERVICE

Unless otherwise stated, the voltages are given with respect to the cathode.

LIMITING VALUES (Absolute maximum rating system)

|                         |                 |       |      |     | notes |
|-------------------------|-----------------|-------|------|-----|-------|
| Frequency               | f               | up to | 1000 | MHz |       |
| Anode voltage           | Va              | max.  | 4    | kV  |       |
| Grid 2 voltage          | V <sub>g2</sub> | max.  | 800  | V   |       |
| Grid 1 voltage          | $-V_{g1}$       | max.  | 100  | V   |       |
| Anode current, 0 dB     | la              | max.  | 700  | mA  |       |
| Anode input power, 0 dB | Wia             | max.  | 2,2  | kW  |       |
| Anode dissipation       | Wa              | max.  | 2    | kW  |       |
| Grid 2 dissipation      | W <sub>g2</sub> | max.  | 25   | W   |       |
| Grid 1 dissipation      | Wg1             | max.  | 25   | W   |       |
| Cathode current         | 1 <sub>k</sub>  | max.  | 1    | A   |       |

## OPERATING CONDITIONS, grounded grid, grounded screen grid

Negative modulation, positive synchronization, combined sound and vision (CCIR standard G)

| Frequency                          | f                   | 470 t  | o 860 | MHz |   |
|------------------------------------|---------------------|--------|-------|-----|---|
| Bandwidth (-1 dB)                  | В                   |        | 10    | MHz | 1 |
| Anode voltage                      | Va                  |        | 3,0   | kV  |   |
| Grid 2 voltage                     | V <sub>g2</sub>     |        | 700   | V   |   |
| Grid 1 voltage                     | V <sub>g1</sub>     | *      | -32   | V   | 2 |
| Anode current, no-signal condition | la                  |        | 500   | mA  |   |
| Anode current                      | la                  | *      | 620   | mA  | 6 |
| Grid 2 current                     | I <sub>g2</sub>     | *      | 4     | mA  | 6 |
| Grid 1 current                     | lg1                 | ~      | 0     | mA  | 6 |
| Output power in load, sync         | W <sub>l</sub> sync |        | 220   | W   |   |
| Power gain                         | G                   |        | 15,6  | dB  |   |
| Intermodulation products           | d                   | $\leq$ | -54   | dB  | 7 |

#### Notes

- 1. With double-tuned circuit.
- 2. To be adjusted for the stated no-signal anode current.
- 3. Black signal including line sync pulses.
- A picture/sync ratio of 75/25 for the outgoing signal requires a ratio of max. 70/30 for the incoming signal, in which case the sync compression is 30/25.

- Measured with a 10-step staircase amplitude, running from 17% to 75% of the peak sync value, with a superimposed 4,43 MHz sine-wave having a 10% peak-to-peak value.
- 6. At a C.W. output power is 220 W.
- 7. Three-tone test method (vision carrier -8 dB, sound carrier -10 dB, sideband signal -16 dB with respect to peak sync = 0 dB).

YL1590

#### CLASS-AB F.M. AMPLIFIER

Unless otherwise stated, the voltages are given with respect to the cathode.

LIMITING VALUES (Absolute maximum rating system)

|                 |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      | note                                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| f               | up to                                                                                                                                                                                                                   | 1000                                                                                                                                                                                                                                                                                                                                                                                                       | MHz                                                  |                                                      |
| Va              | max.                                                                                                                                                                                                                    | 4,2                                                                                                                                                                                                                                                                                                                                                                                                        | kV                                                   |                                                      |
| V <sub>g2</sub> | max.                                                                                                                                                                                                                    | 800                                                                                                                                                                                                                                                                                                                                                                                                        | V                                                    |                                                      |
| $-V_{g1}$       | max.                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                        | V                                                    |                                                      |
| la              | max.                                                                                                                                                                                                                    | 800                                                                                                                                                                                                                                                                                                                                                                                                        | mA                                                   |                                                      |
| Wia             | max.                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                          | kW                                                   |                                                      |
| Wa              | max.                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                          | kW                                                   |                                                      |
| Wg2             | max.                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                         | W                                                    |                                                      |
| W <sub>g1</sub> | max.                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                         | W                                                    |                                                      |
| I <sub>k</sub>  | max.                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                          | А                                                    |                                                      |
| een grid        |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                                      |
| f               | 470                                                                                                                                                                                                                     | to 860                                                                                                                                                                                                                                                                                                                                                                                                     | MHz                                                  |                                                      |
| В               |                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                          | MHz                                                  |                                                      |
| Va              |                                                                                                                                                                                                                         | 4,0                                                                                                                                                                                                                                                                                                                                                                                                        | kV                                                   |                                                      |
| V <sub>g2</sub> |                                                                                                                                                                                                                         | 700                                                                                                                                                                                                                                                                                                                                                                                                        | V                                                    |                                                      |
| V <sub>g1</sub> | ~                                                                                                                                                                                                                       | -48                                                                                                                                                                                                                                                                                                                                                                                                        | V                                                    | 2                                                    |
| la              |                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                        | mA                                                   |                                                      |
| la              | ~                                                                                                                                                                                                                       | 730                                                                                                                                                                                                                                                                                                                                                                                                        | mA                                                   |                                                      |
| l <sub>g2</sub> | *                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                         | mA                                                   |                                                      |
| l <sub>g1</sub> | *                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                          | mA                                                   |                                                      |
| Wia             |                                                                                                                                                                                                                         | 2920                                                                                                                                                                                                                                                                                                                                                                                                       | W                                                    |                                                      |
| Wa              |                                                                                                                                                                                                                         | 1580                                                                                                                                                                                                                                                                                                                                                                                                       | W                                                    |                                                      |
| We              |                                                                                                                                                                                                                         | 1,1                                                                                                                                                                                                                                                                                                                                                                                                        | kW                                                   |                                                      |
| G               |                                                                                                                                                                                                                         | 16,4                                                                                                                                                                                                                                                                                                                                                                                                       | dB                                                   |                                                      |
|                 |                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                         | W                                                    |                                                      |
|                 | $\begin{array}{c} f\\ V_a\\ V_{g2}\\ -V_{g1}\\ I_a\\ W_{ia}\\ W_{g2}\\ W_{g1}\\ I_k\\ en grid\\ f\\ B\\ V_{g1}\\ I_k\\ en grid\\ f\\ B\\ V_{g2}\\ V_{g1}\\ I_a\\ I_a\\ I_{g2}\\ I_{g1}\\ W_{ia}\\ W_{g}\\ G\end{array}$ | $\begin{array}{ccccccc} f & up \ to \\ V_a & max. \\ V_{g2} & max. \\ -V_{g1} & max. \\ I_a & max. \\ W_{ia} & max. \\ W_{g2} & max. \\ W_{g2} & max. \\ W_{g1} & max. \\ I_k & max. \\ W_{g1} & max. \\ I_k & max. \\ \vdots \\ en \ grid \\ f & 470 \\ B \\ V_{a} \\ V_{g2} \\ V_{g1} \\ \approx \\ I_{a} \\ I_{a} \\ I_{a} \\ I_{a} \\ I_{a} \\ I_{a} \\ M_{ia} \\ W_{ia} \\ W_{\ell} \\ G \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

### 2

Notes: see page 6

## Mullard

#### September 1984 7



Fig. 3.

Mullard

September 1984

M84-1826/RC

7

8

## DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into remilar production. YL1610

September 1984

1

Supersedes December 1981 data

## AIR COOLED V.H.F. POWER TETRODE

Forced air cooled coaxial power tetrode in metal-ceramic construction primarily intended for use as a high gain linear broadband amplifier in band III TV transmitters. This type is also recommended for f.m. broadcast applications.

### QUICK REFERENCE DATA

| Class-AB linear amplifier (vision)                                                 |                   |      |      |      |   |
|------------------------------------------------------------------------------------|-------------------|------|------|------|---|
| Frequency                                                                          | f                 |      | 225  | MHz  | - |
| Anode voltage                                                                      | Va                |      | 5,5  | kV   |   |
| Output power in load, sync                                                         | Wl                |      | 11   | kW   |   |
| Power gain, sync                                                                   | G                 |      | 17   | dB   |   |
| Class-AB f.m. amplifier                                                            |                   |      |      |      |   |
| Frequency                                                                          | f                 |      | 230  | MHz  | - |
| Anode voltage                                                                      | Va                | 5,5  | 6,5  | kV   |   |
| Output power in load                                                               | Wl                | 5    | 10   | kW   |   |
| Gain                                                                               | G                 | 19   | 19   | dB   | _ |
| HEATING: direct; thoriated tungsten filament, mesh type.                           |                   |      |      | + 1  |   |
| Filament voltage                                                                   | Vf                |      | 8    | V _3 | % |
| Filament current                                                                   | ۱ <sub>f</sub>    |      | 113  | А    |   |
| Filament peak starting current                                                     | I <sub>fp</sub>   | max. | 560  | А    |   |
| Cold filament resistance                                                           | R <sub>fo</sub>   |      | 7,7  | mΩ   |   |
| Waiting time: procedure prior to switching subsequently $-V_{g1},V_a$ and $V_{g2}$ | :                 |      | ~~   |      |   |
| V <sub>f</sub> = 2 V                                                               | tw                |      | 30   | S    |   |
| then $V_{f} = 8 V$                                                                 | w                 |      | 5    | 5    |   |
|                                                                                    |                   |      |      |      |   |
| TYPICAL CHARACTERISTICS                                                            |                   |      |      |      |   |
| Anode voltage                                                                      | Va                |      | 5    | kV   |   |
| Grid 2 voltage                                                                     | V <sub>g2</sub>   |      | 500  | V    |   |
| Anode current                                                                      | la                |      | 2    | A    |   |
| Transconductance                                                                   | S                 |      | 115  | mA/\ | V |
| Amplification factor                                                               | <sup>µ</sup> g2g1 |      | 8    |      |   |
| CAPACITANCES                                                                       | 200               |      |      | _    |   |
| Input                                                                              | Ci                |      | 85   | pF   |   |
| Output                                                                             | Co                |      | 17,5 | pF   |   |
|                                                                                    |                   |      |      |      |   |

## TEMPERATURE LIMITS

| Absolute maximum envelope temperature | Tenv | 240 °C |
|---------------------------------------|------|--------|
| Recommended maximum seal temperature  | Τs   | 200 °C |

#### COOLING

| W <sub>a</sub> + W <sub>g</sub><br>kW | h<br>m | T <sub>i</sub><br>oC | qmin<br>m³/min | $P_i$<br>$P_a$<br>tube only tube + cavity |      | т <sub>о</sub> max.<br>ос |
|---------------------------------------|--------|----------------------|----------------|-------------------------------------------|------|---------------------------|
| 14                                    | 0      | 25                   | 12             | 1040                                      | 1350 | 100                       |
| 10                                    | 0      | 25                   | 8              | 490                                       | 600  | 100                       |
| 14                                    | 0      | 55                   | 16             | 1680                                      | 2650 | 110                       |
| 10                                    | 0      | 55                   | 12             | 990                                       | 1350 | 110                       |
| 14                                    | 1500   | 25                   | 14             | 1190                                      | 1550 | 100                       |
| 10                                    | 1500   | 25                   | 10             | 640                                       | 800  | 100                       |
| 14                                    | 1500   | 40                   | 16             | 1500                                      | 2200 | 110                       |
| 10                                    | 1500   | 40                   | 12             | 900                                       | 1200 | 110                       |
| 14                                    | 3000   | 25                   | 16             | 1330                                      | 1750 | 100                       |
| 10                                    | 3000   | 25                   | 12             | 780                                       | 1000 | 100                       |

For direction of air flow see outline drawing. The air should be ducted so that sufficient air is directed to the seals to keep the seal temperature below the limit.

## LIMITING VALUES

| 1 | up                                                                 | to 250                                                                                    | MHz |
|---|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----|
| , | a                                                                  | 7                                                                                         | kV  |
| Ŋ | /g2                                                                | 800                                                                                       | V   |
| - | -V <sub>g1</sub>                                                   | 250                                                                                       | V   |
| 1 | a                                                                  | 4                                                                                         | А   |
| V | Via                                                                | 20                                                                                        | kW  |
| V | Va                                                                 | 14                                                                                        | kW  |
| V | V <sub>g2</sub>                                                    | 80                                                                                        | W   |
| V | V <sub>g1</sub>                                                    | 80                                                                                        | W   |
|   | f<br>N<br>-<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V | f up $V_a$<br>$V_{g2}$<br>$-V_{g1}$<br>$I_a$<br>$W_{ia}$<br>$W_a$<br>$W_{g2}$<br>$W_{g1}$ |     |

#### MECHANICAL DATA

Net mass: approx. 9 kg Mounting position: vertical with anode up or down.



## ACCESSORIES

Band II amplifier circuit assemblytype 40788Band III amplifier circuit assembly (vision)type 40787VBand III amplifier circuit assembly (sound)type 40787SInput circuits of the cavities are broadbanded (no input tuning required)

U

## OPERATING CONDITIONS, cathode driven

The voltages are given with respect to the cathode.

CLASS-AB AMPLIFIER FOR TELEVISION SERVICE

| Frequency of vision carrier        | f               | 17        | 5 to 225 | 175 to 225 | MHz |   |
|------------------------------------|-----------------|-----------|----------|------------|-----|---|
| Bandwidth (—1 dB)                  | В               |           | 8        | 8          | MHz | 1 |
| Anode voltage                      | Va              |           | 4,5      | 5,5        | kV  |   |
| Grid 2 voltage                     | V <sub>g2</sub> |           | 500      | 500        | V   |   |
| Grid 1 voltage                     | $-V_{g1}$       | $\approx$ | 50       | 50         | V   | 2 |
| Anode current, zero signal         | la              |           | 1,2      | 1,2        | A   | 3 |
| Anode current, black               | la              | $\approx$ | 2,5      | 2,9        | А   | 3 |
| Grid 2 current, black              | lg2             | $\approx$ | 100      | 100        | mA  | 3 |
| Grid 1 current, black              | lg1             | $\approx$ | 0        | 20         | mA  |   |
| Output power in load, sync         | We              |           | 5,5      | 11         | kW  |   |
| Output power in load, black        | We              |           | 3,3      | 6,6        | kW  |   |
| Gain, black                        | G               |           | 17       | 17         | dB  |   |
| Sync compression                   | sync in/        | /out≤     | 30/25    | 30/25      |     | 4 |
| Differential phase                 |                 | <         | 3        | 3          | deg | 6 |
| Differential gain                  |                 | $\geq$    | 90       | 90         | %   | 6 |
| L.F. linearity                     |                 |           | 90       | 90         | %   | 5 |
| CLASS-AB F.M. AMPLIFIER            |                 |           |          |            |     |   |
| Frequency                          | f               |           | 80 - 230 | 80 - 230   | MHz |   |
| Bandwidth (-3 dB) 80 MHz           | В               | $\approx$ | 1,5      | 1,5        | MHz |   |
| Bandwidth (-3 dB) 230 MHz          | В               | $\approx$ | 4        | 4          | MHz |   |
| Anode voltage                      | Va              |           | 5,5      | 6,5        | kV  |   |
| Grid 2 voltage                     | V <sub>g2</sub> |           | 500      | 500        | V   |   |
| Grid 1 voltage                     | $-V_{g1}$       | $\approx$ | 60       | 60         | V   | 2 |
| Anode current, no-signal condition | la              |           | 1        | 1          | A   |   |
| Anode current                      | la              | *         | 2,2      | 2,7        | А   |   |
| Grid 2 current                     | lg2             | *         | 100      | 125        | mA  |   |
| Grid 1 current                     | lg1             | $\approx$ | 0        | 20         | mA  |   |
| Anode input power                  | Wia             |           | 12       | 18         | kW  |   |
| Output power in load               | Wg              |           | 5        | 10         | kW  |   |
| Driving power                      | Wdr             |           | 65       | 100        | W   |   |
| Power gain                         | G               |           | 19       | 20         | dB  |   |

Mullard

Notes: see page 5

notes



#### Notes

- 1. With double-tuned anode circuit.
- 2. To be adjusted for the stated zero signal anode current.
- 3. Black signal, including line sync pulses.
- A picture/sync ratio of 75/25 for the outgoing signal requires a ratio of max. 70/30 for the incoming signal, in which case the sync. compression in 30/25.
- 5. Measured with a 10 step staircase, running from 17% to 75% of the peak sync value.
- 6. As 5 but with a superimposed 4,43 MHz sine-wave heaving a 10% peak-to-peak value.





6

## Mullard

M84-1827/RC

U





## DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

Supersedes December 1981 data

## AIR COOLED V.H.F. POWER TETRODE

Forced air cooled coaxial power tetrode in metal-ceramic construction primarily intended for use as linear broadband amplifier in band III TV transmitters for vision.

#### QUICK REFERENCE DATA

| Class-AB linear amplifier (vision) |    |     |     |
|------------------------------------|----|-----|-----|
| Frequency                          | f  | 250 | MHz |
| Anode voltage                      | Va | 7   | kV  |
| Output power in load (sync)        | Wg | 30  | kW  |
| Power gain (sync)                  | G  | 18  | dB  |
|                                    |    |     |     |

| HEATING: direct; thoriated tungsten filament, mesh type.                                         |                                                                                          |      |         | + 1               |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|---------|-------------------|
| Filament voltage                                                                                 | Vf                                                                                       |      | 8       | V _3 <sup>%</sup> |
| Filament current                                                                                 | ۱ <sub>f</sub>                                                                           |      | 185     | A                 |
| Filament peak starting current                                                                   | Ifp                                                                                      | max. | 800     | A                 |
| Cold filament resistance                                                                         | R <sub>fo</sub>                                                                          |      | 4,2     | mΩ                |
| Waiting time; procedure prior to switching on subsequently $-V_{0}$<br>Vf = 2 V<br>then Vf = 8 V | <sub>g1</sub> , V <sub>a</sub> and V <sub>g2</sub> :<br>t <sub>w</sub><br>t <sub>w</sub> |      | 30<br>5 | s<br>s            |

## Mullard

1

## TYPICAL CHARACTERISTICS

| Anode voltage                         | Va                |           | 6   | kV   |
|---------------------------------------|-------------------|-----------|-----|------|
| Grid 2 voltage                        | V <sub>g2</sub>   |           | 500 | V    |
| Anode current                         | la                |           | 4   | А    |
| Transconductance                      | S                 | $\approx$ | 160 | mA/V |
| Amplification factor                  | <sup>μ</sup> g2g1 | *         | 8   |      |
| CAPACITANCES, grounded grid           |                   |           |     |      |
| Input                                 | Ci                | ~         | 125 | pF   |
| Output                                | Co                | ≈         | 28  | pF   |
| TEMPERATURE LIMITS                    |                   |           |     |      |
| Absolute maximum envelope temperature | Tenv              | max.      | 240 | oC   |
| Recommended maximum seal temperature  | Ts                | max.      | 200 | oC   |

### COOLING

| W <sub>a</sub> + W <sub>g</sub><br>kW | h<br>m | T <sub>i</sub><br>oC | 9min<br>m³/min | F<br>tube<br>only | Pi<br>Pa<br>tube +<br>cavity | T <sub>o</sub> max.<br>oC |
|---------------------------------------|--------|----------------------|----------------|-------------------|------------------------------|---------------------------|
| 26                                    | 0      | 25                   | 24             | 1320              | 2040                         | 90                        |
| 23                                    | 0      | 25                   | 21             | 1030              | 1600                         | 90                        |
| 26                                    | 0      | 55                   | 28             | 1660              | 2700                         | 110                       |
| 23                                    | 0      | 55                   | 25             | 1340              | 2200                         | 110                       |
| 26                                    | 1500   | 25                   | 24             | 1130              | 1700                         | 100                       |
| 23                                    | 1500   | 25                   | 21             | 880               | 1250                         | 100                       |
| 26                                    | 3000   | 25                   | 28             | 1300              | 2000                         | 100                       |
| 23                                    | 3000   | 25                   | 25             | 1000              | 1 <i>5</i> 00                | 100                       |

For direction of air flow see outline drawing. The air should be ducted so that sufficient air is directed to the seals to keep the seal temperature below the limit.

2

### MECHANICAL DATA

Net mass Mounting position approx. 17 kg vertical with anode up or down.



### ACCESSORIES

 Band III amplifier circuit assembly (vision)
 type 40786V

 Band III amplifier circuit assembly (sound)
 type 40786S

 Input circuits of cavities are broadbanded (no input tuning required)

## Mullard

September 1984

#### LIMITING VALUES (Absolute maximum rating system)

| Frequency                |  | f               | up to | 250 | MHz |
|--------------------------|--|-----------------|-------|-----|-----|
| Anode voltage            |  | Va              |       | 8,5 | kV  |
| Grid 2 voltage           |  | V <sub>g2</sub> |       | 800 | V   |
| Grid 1 voltage           |  | $-V_{g1}$       |       | 250 | V   |
| Anode current            |  | la              |       | 8   | A   |
| Anode input power, black |  | Wia             |       | 50  | kW  |
| Anode dissipation        |  | Wa              |       | 26  | kW  |
| Grid 2 dissipation       |  | W <sub>g2</sub> |       | 200 | W   |
| Grid 1 dissipation       |  | Wg1             |       | 200 | W   |
|                          |  | 0               |       |     |     |

#### OPERATING CONDITIONS, cathode driven

The voltages are given with respect to the cathode.

## CLASS-AB AMPLIFIER FOR TELEVISION SERVICE

| Frequency of vision carrier | f               |           |     | 1   | 75 to 22 | 5   |     | MHz |   |
|-----------------------------|-----------------|-----------|-----|-----|----------|-----|-----|-----|---|
| Bandwidth (-1 dB)           | В               |           | 8   | 8   | 8        | 8   | 7,5 | MHz | 1 |
| Anode voltage               | Va              |           | 5   | 5,5 | 6        | 6,5 | 7   | kV  |   |
| Grid 2 voltage              | V <sub>g2</sub> |           | 500 | 500 | 500      | 500 | 500 | V   |   |
| Grid 1 voltage              | $-V_{g1}$       | $\approx$ | 50  | 50  | 50       | 50  | 50  | V   | 2 |
| Anode current (zero signal) | la              |           | 1,2 | 1,2 | 1,2      | 1,2 | 1,2 | A   |   |
| Anode current (black)       | la              | $\approx$ | 3,5 | 4,0 | 4,6      | 5,2 | 5,7 | А   |   |
| Grid 2 current (black)      | I <sub>q2</sub> | $\approx$ | 100 | 120 | 150      | 150 | 150 | mA  |   |
| Grid 1 current (black)      | l <sub>g1</sub> | $\approx$ | 0   | 15  | 55       | 120 | 180 | mA  |   |
| Output power in load, sync  | We              |           | 11  | 15  | 20       | 25  | 30  | kW  |   |
| Output power in load, black | Wl              |           | 6,6 | 9   | 12       | 15  | 18  | kW  |   |
| Gain                        | G               |           |     |     | 18       |     |     | dB  |   |
| Sync compression            | sync in/out     | <         |     |     | 30/25    |     |     |     |   |
| Diffferential phase         |                 | <         |     |     | 5        |     |     | deg |   |
| Differential gain           |                 | $\geq$    |     |     | 90       |     |     | %   |   |
| L.F. linearity              |                 | $\geq$    |     |     | 90       |     |     | %   |   |

#### Notes

1. With double tuned anode circuit.

2. To be adjusted for the stated zero signal anode current.

September 1984

Mullard

notes

#### Air cooled v.h.f. power tetrode

## YL1630



5

Mullard

September 1984



Mullard

September 1984

M84-1828/Y

 $\Box$ 

6



## AIR COOLED V.H.F. POWER TETRODE

Forced air cooled coaxial power tetrode in metal-ceramic construction for use in:

- linear broad band amplifiers for T.V. band III, vision and sound combined
- Inear broad band amplifiers for T.V. band III, vision only
- F.M. broadcast applications in band II

### QUICK REFERENCE DATA

| Class-AB linear amplifier (vision and sound combined)                                                |                 |      |      |                 |
|------------------------------------------------------------------------------------------------------|-----------------|------|------|-----------------|
| Frequency                                                                                            | f               | 22   | 25   | MHz             |
| Anode voltage                                                                                        | Va              | 5,5  | 7    | kV              |
| Output power in load, sync                                                                           | Wg              | 5    | 10   | kW              |
| Power gain                                                                                           | G               | 16   | 16   | dB              |
| Class-AB linear amplifier (vision)                                                                   |                 |      |      |                 |
| Frequency                                                                                            | f               | 225  |      | MHz             |
| Anode voltage                                                                                        | Va              | 6    | 7,5  | kV              |
| Output power in load, sync                                                                           | Wg              | 11   | 21   | kW              |
| Power gain                                                                                           | G               | 15,5 | 15,5 | dB              |
| Class-AB f.m. amplifier                                                                              |                 |      |      |                 |
| Frequency                                                                                            | f               | 110  |      | MHz             |
| Anode voltage                                                                                        | Va              | 7,5  | 9    | kV              |
| Output power in load                                                                                 | We              | 10,5 | 20   | kW              |
| Gain                                                                                                 | G               | 17   | 17   | dB              |
| HEATING: direct: thoriated tungsten filament, mesh type                                              |                 |      |      |                 |
| Filament voltage                                                                                     | Vf              |      | 10,4 | $v^{+1}_{-3}$ % |
| Filament current                                                                                     | ۱ <sub>f</sub>  |      | 112  | A               |
| Filament peak starting current                                                                       | l <sub>fp</sub> | max. | 750  | A               |
| Cold filament resistance                                                                             | R <sub>fo</sub> |      | 10,5 | $m\Omega$       |
| Waiting time: procedure prior to switching subsequently $-V_{g1}$ , $V_a$ and $V_{g2}$ : $V_f = 2 V$ | tw              |      | 30   | S               |
| then $V_{f} = 10.4 V$                                                                                | tw              |      | 5    | S               |

orange binder, tab 7

Mullard

### TYPICAL CHARACTERISTICS

| Anode voltage                | Va                |   | 6   | kV   |
|------------------------------|-------------------|---|-----|------|
| Grid 2 voltage               | V <sub>g2</sub>   |   | 900 | V    |
| Anode current                | la                |   | 3   | A    |
| Transconductance             | S                 |   | 70  | mA/V |
| Amplification factor         | μ <sub>g2g1</sub> |   | 8,5 |      |
| CAPACITANCES, grounded grid  |                   |   |     |      |
| Input                        | Ci                | ~ | 70  | pF   |
| Output                       | Co                | * | 25  | pF   |
| TEMPERATURE LIMITS           |                   |   |     |      |
| Maximum envelope temperature | Tenv              |   | 240 | oC   |
| Maximum seal temperature     | Τs                |   | 200 | oC   |

#### COOLING

| W <sub>a</sub> + W <sub>g</sub> | h    | Тi | qmin   | Δ<br>Pa      | p<br>a           | Tomax |
|---------------------------------|------|----|--------|--------------|------------------|-------|
| kW                              | m    | oC | m³/min | tube<br>only | tube +<br>cavity | oC    |
| 17                              | 0    | 25 | 15     | 1400         | 1600             | 100   |
| 14                              | 0    | 25 | 12     | 1000         | 1100             | 100   |
| 17                              | 0    | 55 | 19     | 2100         | 2400             | 110   |
| 14                              |      | 55 | 16     | 1600         | 1800             | 110   |
| 17                              | 1500 | 25 | 17     | 1550         | 1700             | 100   |
| 14                              | 1500 | 25 | 14     | 1100         | 1200             | 100   |
| 17                              | 3000 | 25 | 19     | 1450         | 1700             | 100   |
| 14                              | 3000 | 25 | 16     | 1150         | 1300             | 100   |

For direction of air flow see outline drawing. The air should be ducted so that sufficient air is directed to the seals to keep the seal temperature below the limit.

### MECHANICAL DATA

Net mass Mounting position approx. 11 kg



### ACCESSORIES

Band II amplifier circuit assembly Band III amplifier circuit assembly type 40788 type 40786A

Input circuit of cavity is broadbanded (no input tuning required).



### R.F. CLASS-AB LINEAR AMPLIFIER FOR TELEVISION SERVICE

#### LIMITING VALUES (Absolute maximum rating system)

| Frequency                | f               | up to | 250 | MHz |
|--------------------------|-----------------|-------|-----|-----|
| Anode voltage            | Va              |       | 10  | kV  |
| Grid 2 voltage           | V <sub>g2</sub> |       | 1   | kV  |
| Grid 1 voltage           | $-V_{g1}$       |       | 500 | V   |
| Anode current, black     | la              |       | 7   | А   |
| Anode input power, black | Wia             |       | 30  | kW  |
| Anode dissipation        | Wa              |       | 17  | kW  |
| Grid 2 dissipation       | W <sub>q2</sub> |       | 150 | W   |
| Grid 1 dissipation       | W <sub>q1</sub> |       | 50  | W   |

#### **OPERATING CONDITIONS**

Vision and sound combined (10:1) cathode driven 175 to 225 MHz f Frequency В 8 8 MHz Bandwidth (-1 dB) Va 5,5 7 kV Anode voltage 900 900 V V<sub>g2</sub> Grid 2 voltage V<sub>g1</sub> 95 ≈ 100 V  $\approx$ Grid 1 voltage\* 1.8 1.8 A Anode current (zero signal) l<sub>a</sub> la ≈ 2,45 ≈ 2.9 A Anode current, black + line sync pulse 30 50 mA I<sub>a2</sub> ~  $\approx$ Grid 2 current, black + line sync pulse 0  $\approx$ 0 mA Grid 1 current, black + line sync pulse l<sub>a1</sub>  $\approx$ 10 kW Wg 5 Output power in load (sync) ≤ 125 ≤ 250 W Wdr Driving power (sync) ≥ 16 dB G  $\geq$ 16 Power gain d ≤ -54 ≤-54 dB Intermodulation products\*\*

Mullard

\* To be adjusted for the stated zero signal anode current.

\*\* Measured with:

sync. = 0 dB black = -2,2 dB grey = -8 dB sound = -10 dB side band = -16 dB

Intermodulation products of driver  $\leq -70$  dB.

June 1985

4

| OPE | ERA | TING | CONDI | TIONS |
|-----|-----|------|-------|-------|
|     |     |      |       |       |

| Vision only                 |                 |         |            |     | notes |
|-----------------------------|-----------------|---------|------------|-----|-------|
| Frequency                   | f 175           |         | 175 to 225 |     |       |
| Bandwidth (-1 dB)           | В               | 7       | 7          | MHz | 1     |
| Anode voltage               | Va              | 6       | 7,5        | kV  |       |
| Grid 2 voltage              | V <sub>g2</sub> | 800     | 800        | V   |       |
| Grid 1 voltage              | $-V_{g1}$       | 95      | 100        | V   | 2     |
| Anode current (zero signal) | la              | 1,2     | 1          | А   |       |
| Anode current, black        | la              | 2,75    | 3,6        | A   | 3     |
| Grid 2 current, black       | I <sub>q2</sub> | 75      | 75         | mA  | 3     |
| Grid 1 current, black       | I <sub>q1</sub> | 10      | 100        | mA  | 3     |
| Output power in load, black | Ŵę              | 6,6     | 12,6       | kW  |       |
| Output power in load, sync  | We              | 11      | 21         | kW  |       |
| Gain, black                 | G               | 15,5    | 15,5       | dB  |       |
| Sync compression            |                 | ≤ 27/25 | ≤ 27/25    |     | 4     |
| Differential phase          |                 | ≤ 3     | ≤ 3        | deg | 6     |
| Differential gain           |                 | ≥ 90    | ≥ 90       | %   | 6     |
| L.F. linearity              |                 | ≥ 90    | ≥ 90       | %   | 5     |
|                             |                 |         |            |     |       |

#### Notes

1. With double-tuned circuit.

- 2. To be adjusted for the stated zero signal anode current.
- 3. Black signal, including line sync pulses.
- A picture/sync ratio of 75/25 for the outgoing signal requires a ratio of max. 70/30 for the incoming signal, in which case the sync compression is 30/25.
- 5. Measured with a step staircase, running from 17% to 75% of the peak sync value.
- 6. As 5 but with a superimposed 4,43 MHz sine-waye having a 10% peak-to-peak value.



### CLASS-AB F.M. AMPLIFIER

LIMITING VALUES (Absolute maximum rating system )

| Frequency                   | f               | up to         | 250           | MHz |
|-----------------------------|-----------------|---------------|---------------|-----|
| Anode voltage               | Va              |               | 10            | kV  |
| Grid 2 voltage              | V <sub>g2</sub> |               | 1             | kV  |
| Grid 1 voltage              | $-V_{g1}$       |               | 500           | V   |
| Anode current, black        | la              |               | 7             | А   |
| Anode dissipation           | Wa              |               | 17            | kW  |
| Grid 2 dissipation          | Wg2             |               | 150           | W   |
| Grid 1 dissipation          | Wg1             |               | 50            | W   |
| OPERATING CONDITIONS        |                 |               |               |     |
| Frequency                   | f               | 88 to         | 110           | MHz |
| Bandwidth (-3 dB)           | В               | ≈ 1,5         | ≈ 1,5         | MHz |
| Anode voltage               | Va              | 7,5           | 9             | kV  |
| Grid 2 voltage              | V <sub>g2</sub> | 700           | 700           | V   |
| Grid 1 voltage*             | $-V_{g1}$       | 110           | 90            | V   |
| Anode current (zero signal) | la              | 0,5           | 1             | А   |
| Anode current               | la              | ≈ 2,15        | ≈ 3,4         | А   |
| Grid 2 current              | l <sub>g2</sub> | $\approx$ 120 | $\approx 150$ | mA  |
| Grid 1 current              | lg1             | ≈ 20          | $\approx 150$ | mA  |
| Output power in load        | We              | ≥ 10,5        | ≥ 20          | kW  |
| Driving power (sync)        | Wdr             | ≤ 200         | ≤ 400         | W   |
| Power gain                  | G               | ≥ 17          | ≥ 17          | dB  |

\* To be adjusted for the stated zero signal anode current.



0

## Mullard

## June 1985



Mullard

8

Supersedes December 1981 data

## WATER COOLED 100 kW POWER TETRODE

Water cooled power tetrode in metal-ceramic coaxial construction for use as r.f. and a.f. amplifier in a.m. broadcast transmitters and scientific applications.

#### QUICK REFERENCE DATA

| Class-C                                                  |                   |      |        |                          |
|----------------------------------------------------------|-------------------|------|--------|--------------------------|
| Frequency                                                | f                 |      | 30     | MHz                      |
| Anode voltage                                            | Va                |      | 11     | kV                       |
| Output power                                             | Wo                |      | 125    | kW                       |
| Class B                                                  |                   |      |        |                          |
| Anode voltage                                            | Va                |      | 11     | kV                       |
| Output power in load                                     | Wl                |      | 2 x 75 | kW                       |
| HEATING: direct; thoriated tungsten filament, mesh type. |                   |      |        |                          |
| Filament voltage                                         | Vf                |      | 10     | ∨ <sup>+ 1%</sup><br>−3% |
| Filament current                                         | ۱ <sub>f</sub>    |      | 280    | А                        |
| Filament peak starting current                           | l <sub>fp</sub>   | max. | 1600   | A                        |
| Cold filament resistance                                 | R <sub>fo</sub>   |      | 4,0    | mΩ                       |
| Waiting time                                             | tw                |      | 10     | S                        |
| TYPICAL CHARACTERISTICS                                  |                   |      |        |                          |
| Anode voltage                                            | Va                |      | 3      | kV                       |
| Grid 2 voltage                                           | V <sub>q2</sub>   |      | 1      | kV                       |
| Anode current                                            | l <sub>a</sub>    |      | 25     | A                        |
| Transconductance                                         | S                 |      | 140    | mA/V                     |
| Amplification factor                                     | <sup>μ</sup> g2g1 |      | 5      |                          |
| CAPACITANCES                                             |                   |      |        |                          |
| Cathode to grid 1                                        | C <sub>ka1</sub>  | *    | 180    | pF                       |
| Cathode to grid 2                                        | Cka2              | *    | 13     | pF                       |
| Cathode to anode                                         | Cka               | *    | 0,3    | pF                       |
| Grid 1 to grid 2                                         | Cg1g2             | ~    | 300    | рF                       |
| Grid 1 to anode                                          | Cg1a              | *    | 2,3    | pF                       |
| Grid 2 to anode                                          | C <sub>g2a</sub>  | ~    | 47     | pF                       |

Pressure drop in the anode cooler

Absolute maximum water pressure

approx. 35 kg

MECHANICAL DATA

Net mass

#### **TEMPERATURE LIMITS** 240 °C Tenv max. Absolute maximum envelope temperature 200 °C т Recommended maximum seal temperature max. Low velocity air flow of at least 1 m3/min should be directed to the grid and filament seals in order to keep the temperature below 200 °C. COOLING 150 kW Wa Maximum anode dissipation (water cooling, 80 l/min) 120 kW Water cooling with 60 l/min Wa 100 °C Absolute maximum outlet temperature To

20 kPa

500 kPa

Mounting position vertical with anode up Ø270±0,3 Ø196±0,3 110 Ø20 (2x) M1/. M6 (3×120°) pitch circle Ø48 245 max 445 max -a 15 ŧ 199 max 144 <sup>171</sup> 190 196 g2 23 28 ¥ q1 f(k) 27 Ā f 30 Ø60±0,3 -Ø100±0,3+ Ø140±0,3 Ø176+0,7 7283747.4 0.

Mullard

Fig. 1.

### R.F. CLASS-C ANODE AND SCREEN GRID MODULATION (CARRIER CONDITIONS)

## LIMITING VALUES (Absolute maximum rating system)

| Frequency                       | f               | up to | 30   | MHz |
|---------------------------------|-----------------|-------|------|-----|
| Anode voltage                   | Va              | max.  | 13   | kV  |
| Grid 2 voltage                  | V <sub>g2</sub> | max.  | 1200 | V   |
| Grid 1 voltage                  | V <sub>q1</sub> | max.  | -800 | V   |
| Cathode current                 | I <sub>k</sub>  |       | 17   | А   |
| Cathode current (peak)          | I <sub>k</sub>  |       | 160  | А   |
| Anode input power               | Wia             | max.  | 200  | kW  |
| Anode dissipation               | Wa              | max.  | 150  | kW  |
| Grid 2 dissipation              | Wg2             | max.  | 2,2  | kW  |
| Grid 1 dissipation              | W <sub>g1</sub> | max.  | 1    | kW  |
| OPERATING CONDITIONS            |                 |       |      |     |
| Frequency                       | f               |       | 30   | MHz |
| Anode voltage                   | Va              | ≈     | 11   | kV  |
| Grid 2 voltage (modulation 80%) | V <sub>a2</sub> | *     | 1    | kV  |
| Grid 1 voltage                  | V <sub>q1</sub> | ~     | -550 | V   |
| Grid driving voltage peak       | Vp              |       | 700  | V   |
| Anode current                   | la              | ~     | 15   | А   |
| Grid 2 current                  | I <sub>g2</sub> | ~     | 0,5  | А   |
| Grid 1 current                  | l <sub>g1</sub> | ~     | 0,8  | А   |
| Driving power                   | W <sub>dr</sub> |       | 1    | kW  |
| Grid 2 dissipation              | W <sub>q2</sub> |       | 500  | W   |
| Grid 1 dissipation              | Wal             |       | 120  | W   |
| Anode input power               | Wia             |       | 165  | kW  |
| Anode output power              | Woa             |       | 125  | kW  |
| Anode dissipation               | Wa              |       | 40   | kW  |
| Efficiency                      | η               |       | 76   | %   |
|                                 |                 |       |      |     |

## A.F. CLASS-B POWER AMPLIFIER AND MODULATOR

## LIMITING VALUES, per tube (Absolute maximum rating system)

| Anode voltage                              | Va               |   | 15      | kV |  |
|--------------------------------------------|------------------|---|---------|----|--|
| Grid 2 voltage                             | V <sub>a2</sub>  |   | 1,6     | kV |  |
| Grid 1 voltage                             | V <sub>a1</sub>  |   | -800    | V  |  |
| Anode input power                          | Wia              |   | 200     | kW |  |
| Anode dissipation                          | Wa               |   | 150     | kW |  |
| Cathode current (peak)                     | I <sub>k</sub>   |   | 160     | А  |  |
| Cathode current                            | I <sub>k</sub>   |   | 20      | А  |  |
| Grid 2 dissipation                         | W <sub>q2</sub>  |   | 2,2     | kW |  |
| Grid 1 dissipation                         | W <sub>g1</sub>  |   | 1       | kW |  |
| OPERATING CONDITIONS, two tubes in push-pu | 11               |   |         |    |  |
| Anode voltage                              | Va               | * | 11      | kV |  |
| Grid 2 voltage                             | V <sub>a2</sub>  | * | 1,6     | kV |  |
| Grid 1 voltage, I <sub>ao</sub> = 1 A      | V <sub>q1</sub>  | * | -350    | V  |  |
| Anode current                              | la               |   | 2 x 10  | А  |  |
| Grid 2 current                             | I <sub>a2</sub>  |   | 2 x 0,3 | А  |  |
| Grid 1 current                             | l <sub>a</sub> 1 | * | 0       | А  |  |
| Anode input power                          | W <sub>ia</sub>  |   | 2 x 110 | kW |  |
| Anode output power                         | Woa              |   | 2 x 75  | kW |  |
| Anode dissipation                          | Wa               |   | 2 x 35  | kW |  |
| Efficiency                                 | η                |   | 68      | %  |  |
|                                            |                  |   |         |    |  |

4

### July 1984



Fig. 2.

5



Fig. 3.

6

YL1640



Fig. 4.

July 1984
This information is derived from development samples made available for evaluation, It does not necessarily imply that the device will go into regular production.

# WATER COOLED 500 kW POWER TETRODE

Water cooled power tetrode in metal-ceramic coaxial construction for use as r.f. and a.f. amplifier in a.m. broadcast transmitters and scientific applications.

#### QUICK REFERENCE DATA

| Class-C                                                  |                   |      |       |      |
|----------------------------------------------------------|-------------------|------|-------|------|
| Frequency                                                | f                 |      | 30    | MHz  |
| Anode voltage                                            | Va                |      | 12    | kV   |
| Output power                                             | Wo                |      | 520   | kW   |
|                                                          |                   |      |       |      |
| Class B                                                  |                   |      |       |      |
| Anode voltage                                            | va                |      | 12    | kV   |
| Output power in load                                     | Wę                | 2    | x 330 | kW   |
| HEATING: direct: thoriated tungsten filament, mesh type. |                   |      |       |      |
| Filament voltage                                         | Vf                |      | 23    | V    |
| Filament current                                         | l <sub>f</sub>    |      | 500   | A    |
| Filament peak starting current                           | lfn               | max. | 1500  | А    |
| Cold filament resistance                                 | Rfo               |      | 4,5   | mΩ   |
| Waiting time                                             | Tw                | min. | 10    | s    |
| Recommended switching procedure: 8 s at 8 V: 2 s at 23 V |                   |      |       |      |
| TYPICAL CHARACTERISTICS                                  |                   |      |       |      |
| Anode voltage                                            | Va                |      | 3     | kV   |
| Grid 2 voltage                                           | V <sub>a2</sub>   |      | 1     | kV   |
| Anode current                                            | l <sub>a</sub>    |      | 35    | А    |
| Transconductance                                         | S                 |      | 500   | mA/V |
| Amplification factor                                     | <sup>µ</sup> g2g1 |      | 4,4   |      |
| CAPACITANCES                                             |                   |      |       |      |
| Cathode to grid 1                                        | C <sub>ka1</sub>  | ~    | 425   | pF   |
| Cathode to grid 2                                        | Ckg2              | ~    | 40    | pF   |
| Cathode to anode                                         | Cka               | ~    | 0,6   | pF.  |
| Grid 1 to grid 2                                         | Cala2             | ~    | 750   | pF   |
| Grid 1 to anode                                          | C <sub>q1a</sub>  | ~    | 4,2   | pF   |
| Grid 2 to anode                                          | C <sub>g2a</sub>  | ~    | 100   | pF   |

5

# Mullard

July 1982

| Absolute maximum envelope temperature                             | Tany may               | <. 240 ℃          |
|-------------------------------------------------------------------|------------------------|-------------------|
| Recommended maximum seal temperature                              | T max                  | <. 200 °C         |
| Low velocity air flow should be directed to the grid and filament | seals in order to keep | o the temperature |
| below 200 °C.                                                     |                        |                   |
| COOLING                                                           |                        |                   |
| Maximum anode dissipation                                         | Wa                     | 500 kW            |
| Water cooling with 200 l/min                                      |                        |                   |
| Absolute maximum output temperature                               | To                     | 100 °C            |
| MECHANICAL DATA                                                   | 30 ±0.5                | -                 |
| Net mass approx. 65 kg                                            | 90 ± 0.5               | •                 |
| Mounting position vertical with anode up                          | (団)                    | Y                 |
| 19 max                                                            | Î.Î                    | 19max             |
| 95 •<br>90°(4 x)                                                  | M14                    |                   |
| 3                                                                 | 0(2×)                  |                   |
| 8 4                                                               |                        |                   |
|                                                                   |                        |                   |
|                                                                   |                        |                   |
|                                                                   |                        |                   |
|                                                                   |                        | 392<br>max        |
| Pars                                                              |                        |                   |
| 0                                                                 |                        |                   |
| • • • • • • • •                                                   | 320 ± 1                | ► 572<br>max      |
|                                                                   |                        |                   |
|                                                                   | HID-                   |                   |
|                                                                   |                        | ¥                 |
| · · · · · · · · · · · · · · · · · · ·                             |                        |                   |
|                                                                   | 1                      |                   |
| 139                                                               | 254 <b>•</b>           |                   |
| 156 ±15<br>175 ±15<br>±15                                         | 10 ±1                  | 180               |
|                                                                   |                        |                   |
|                                                                   |                        |                   |
|                                                                   |                        |                   |
|                                                                   | 00 ±0.3                |                   |
| 92 14                                                             | 0 ±0.3                 |                   |
| 18                                                                | 0 ±0.3                 |                   |
| Fig. 1.                                                           | 0 ±0.3                 | 7280195           |
|                                                                   |                        |                   |
| July 1982 ) ( Mullard                                             |                        |                   |
| Initialu                                                          |                        | $\checkmark$      |
|                                                                   |                        |                   |

## R.F. CLASS-C ANODE AND SCREEN GRID MODULATION (CARRIER CONDITIONS)

LIMITING VALUES (Absolute maximum rating system)

| Frequency                       | f               |           | 30   | MHz |
|---------------------------------|-----------------|-----------|------|-----|
| Anode voltage                   | Va              | max.      | 13,5 | k₩  |
| Grid 2 voltage                  | V <sub>q2</sub> | max.      | 1250 | V   |
| Grid 1 voltage                  | V <sub>q1</sub> | max.      | -800 | V   |
| Anode input power               | Wia             | max.      | 700  | kW  |
| Anode dissipation               | Wa              | max.      | 500  | kW  |
| Cathode current                 | I <sub>k</sub>  |           | 65   | А   |
| Cathode current (peak)          | I <sub>k</sub>  |           | 600  | А   |
| Grid 2 dissipation              | Wg2             | max.      | 8    | kW  |
| Grid 1 dissipation              | W <sub>g1</sub> | max.      | 4    | kW  |
| OPERATING CONDITIONS            |                 |           |      |     |
| Frequency                       | f               |           | 30   | MHz |
| Anode voltage                   | Va              | $\approx$ | 12   | kV  |
| Grid 2 voltage (modulation 80%) | V <sub>g2</sub> | $\approx$ | 1,1  | kV  |
| Grid 1 voltage                  | V <sub>g1</sub> | $\approx$ | -600 | V   |
| Grid driving voltage peak       | Vp.             |           | 750  | V   |
| Anode current                   | la              | $\approx$ | 54   | А   |
| Grid 2 current                  | lg2             | $\approx$ | 4    | А   |
| Grid 1 current                  | lg1             | $\approx$ | 2,5  | А   |
| Driving power                   | Wdr             |           | 4    | kW  |
| Grid 2 dissipation              | Wg2             |           | 4,4  | kW  |
| Grid 1 dissipation              | Wg1             |           | 400  | W   |
| Anode input power               | Wia             |           | 648  | kW  |
| Anode output power              | Woa             |           | 520  | kW  |
| Anode dissipation               | Wa              |           | 128  | kW  |
| Efficiency                      | η               |           | 80   | %   |
|                                 |                 |           |      |     |

Mullard

#### A.F. CLASS-B POWER AMPLIFIER AND MODULATOR

LIMITING VALUES, per tube (Absolute maximum rating system)

| Anode voltage                                | Va              |           | 15      | kV |
|----------------------------------------------|-----------------|-----------|---------|----|
| Grid 2 voltage                               | V <sub>q2</sub> |           | 1,5     | kV |
| Grid 1 voltage                               | V <sub>q1</sub> |           | -800    | V  |
| Anode input power                            | Wia             |           | 600     | kW |
| Anode dissipation                            | Wa              |           | 500     | kW |
| Cathode current                              | I <sub>k</sub>  |           | 50      | A  |
| Cathode current (peak)                       | I <sub>k</sub>  |           | 600     | А  |
| Grid 2 dissipation                           | W <sub>q2</sub> |           | 9       | kW |
| Grid 1 dissipation                           | Wg1             |           | 3       | kW |
| OPERATING CONDITIONS, two tubes in push-pull |                 |           |         |    |
| Anode voltage                                | Va              | $\approx$ | 12      | kV |
| Grid 2 voltage                               | V <sub>a2</sub> | $\approx$ | 1250    | V  |
| Grid 1 voltage, I <sub>ao</sub> = 1 A        | V <sub>q1</sub> | $\approx$ | -350    | V  |
| Anode current                                | la              |           | 2 x 39  | А  |
| Grid 2 current                               | Iq2             |           | 2 x 2   | А  |
| Grid 1 current                               | I <sub>q1</sub> | $\approx$ | 0       | mΑ |
| Anode input power                            | Wia             |           | 2 x 468 | kW |
| Anode output power                           | Woa             |           | 2 × 330 | kW |
| Anode dissipation                            | Wa              |           | 2 x 138 | kW |
| Efficiency                                   | η               |           | 70,5    | %  |

July 1982

4

# Mullard

U



Mullard

DEVELOPMENT SAMPLE DATA

U

July 1982



Mullard

July 1982

6

C





Fig. 4.

DEVELOPMENT SAMPLE DATA

U

Mullard

July 1982





Mullard

July 1982

/ 1982

M82-1563RE

5

# WATER COOLED R.F. POWER TETRODE

Water cooled coaxial power tetrode in metal-ceramic construction primarily intended for use in r.f. power amplifier applications up to 250 MHz.

#### QUICK REFERENCE DATA

| Class-AB amplifier                                                   |                   |                   |                         |      |   |
|----------------------------------------------------------------------|-------------------|-------------------|-------------------------|------|---|
| Frequency                                                            | f                 | 200               | 30                      | MHz  |   |
| Anode voltage                                                        | Va                | 10                | 10                      | kV   |   |
| Output power in load                                                 | Wl                | 65                | 120                     | kW   |   |
| HEATING: direct; thoriated tungsten filament, mesh type.             |                   |                   |                         |      | - |
| Filament voltage                                                     | Vf                | 1                 | 2 <sup>+1%</sup><br>-3% | V    | • |
| Filament current                                                     | ۱ <sub>f</sub>    |                   | 265                     | A    |   |
| Filament peak starting current                                       | Ifp               | max.              | 1500                    | A    |   |
| Cold filament resistance                                             | R <sub>fo</sub>   |                   | 4,6                     | mΩ   |   |
| Waiting time                                                         | tw                |                   | 10                      | s    |   |
| The filament is designed to accept temporary fluctuations of $\pm 5$ | 5%                |                   |                         |      |   |
| TYPICAL CHARACTERISTICS                                              |                   |                   |                         |      |   |
| Anode voltage                                                        | Va                |                   | 10                      | kV   |   |
| Grid 2 voltage                                                       | V <sub>q2</sub>   |                   | 900                     | V    |   |
| Anode current                                                        | la                |                   | 10                      | А    |   |
| Transconductance                                                     | S                 | ~                 | 120                     | mA/V |   |
| Amplification factor                                                 | <sup>μ</sup> g2g1 |                   | 4,5                     |      |   |
| CAPACITANCES                                                         | gi<br>c           | rounded<br>athode | ground<br>grid          | ded  |   |
| Input                                                                | Ci                | 347               | 160                     | pF   |   |
| Output                                                               | Co                | 45                | 45                      | pF   |   |
| Anode to grid 1                                                      | C <sub>ag1</sub>  | 3,2               | _                       | pF   |   |
| Anode to filament                                                    | Cak               | _                 | 0,8                     | pF   |   |
| TEMPERATURE LIMITS                                                   |                   |                   |                         |      |   |
| Absolute maximum envelope temperature                                | Tenv              | max.              | 240                     | °C   |   |
| Recommended maximum seal temperature                                 | т                 | max.              | 200                     | °C   |   |

Mullard

September 1984

orange binder, tab 7

| W <sub>a</sub> + W <sub>g</sub><br>kW | т <sub>і</sub><br>°С | q<br>l/min. | р <sub>і</sub><br>к <sub>Ра</sub> | max. T <sub>out</sub><br>oC |
|---------------------------------------|----------------------|-------------|-----------------------------------|-----------------------------|
| 100                                   | 20                   | 50          | 65                                | 50                          |
|                                       | 50                   | 80          | 120                               | 70                          |
| 80                                    | 20                   | 34          | 30                                | 54                          |
|                                       | 50                   | 54          | 55                                | 72                          |
| 40                                    | 20                   | 15          | 7                                 | 60                          |
|                                       | 50                   | 24          | 13                                | 75                          |

#### COOLING

| Absolute maximum water inlet temperature | Ti | 50 °C   |
|------------------------------------------|----|---------|
| Absolute maximum water pressure          | Pi | 600 kPa |

An air flow of at least 2  $\,m^3/min$  should be ducted to the seals to keep the seal temperature below 200  $^{\rm O}C.$ 

#### R.F. CLASS-AB POWER AMPLIFIER

Unless otherwise stated, the vo'tages are given with respect to the cathode.

#### LIMITING VALUES (Absolute maximum rating system)

| Frequency          | f               | up to | 250  | MHz |
|--------------------|-----------------|-------|------|-----|
| Anode voltage      | Va              | max.  | 14   | kV  |
| Grid 2 voltage     | V <sub>g2</sub> | max.  | 1200 | V   |
| Grid 1 voltage     | $-V_{g1}$       | max.  | 600  | V   |
| Anode dissipation  | Wa              | max.  | 100  | kW  |
| Grid 2 dissipation | Wg2             | max.  | 1,8  | kW  |
| Grid 1 dissipation | W <sub>g1</sub> | max.  | 0,8  | kW  |
| Cathode current    | l <sub>k</sub>  | max.  | 22   | А   |
|                    |                 |       |      |     |

| OPERATING CONDITIONS               |                  | grounded cathode | grounded grid |
|------------------------------------|------------------|------------------|---------------|
| Frequency                          | f                | ≼ 30             | 200 MHz       |
| Anode voltage                      | Va               | 10               | 10 kV         |
| Grid 2 voltage                     | V <sub>g2</sub>  | 900              | 900 V         |
| Grid 1 voltage                     | $-V_g$           | 1* 330           | 400 V         |
| Anode current, no-signal condition | la               | 1,0              | 0,5 A         |
| Anode current                      | la               | 17               | 12 A          |
| Grid 2 current                     | l <sub>g</sub> 2 | 0,9              | 0,5 A         |
| Grid 1 current                     | l <sub>g1</sub>  | 1,75             | 0,5 A         |
| Output power in load               | We               | ≥ 120            | 65 kW         |
| Driving power                      | Wdr              | ≈ 1              | 3,5 kW        |
|                                    |                  |                  |               |

\* To be adjusted for the stated no signal anode current.

#### MECHANICAL DATA

Net mass Mounting position approx. 12 kg

vertical with anode up (normal position) or anode down with reversed direction of water flow.







September 1984

Mullard

M84-1829/RC

U

# AIR-COOLED R.F. POWER TETRODE

for grounded cathode operation

Forced air-cooled coaxial power tetrode in metal-ceramic construction primarily intended for use as grid-driven linear amplifier for single sideband, suppressed carrier service. This type is also recommended for f.m. broadcast applications. The electrode arrangement is specially designed for grounded cathode operation.

#### QUICK REFERENCE DATA

| Class-AB linear SSB amplifier                     |                |      |           |                  |
|---------------------------------------------------|----------------|------|-----------|------------------|
| Frequency                                         | f              |      | 1,5 to 30 | MHz              |
| Anode voltage                                     | V              | 9    | 8         | kV               |
| Output power in load                              | W              |      | 10        | kW               |
| Power gain                                        | G              |      | 23        | dB               |
| Class-AB FM amplifier                             |                |      |           |                  |
| Frequency                                         | f              |      | 110       | MHz              |
| Anode voltage                                     | V              | 6,5  | 7,5       | kV               |
| Output power in load                              | W              | 10   | 20        | kW               |
| Power gain                                        | G              | 23   | 22        | dB               |
| HEATING: direct; thoriated tungsten filament, mes | h type         |      |           |                  |
| Filament voltage                                  | V              |      | 10,4      | V <sup>+1%</sup> |
| Filament current                                  | ۱ <sub>f</sub> |      | 115       | A                |
| Filament peak starting current                    | lf             | max. | 750       | A                |
| Cold filament resistance                          | R              | 0    | 10,5      | mΩ               |
| Waiting time                                      | t <sub>w</sub> | min. | 1         | S                |
| TYPICAL CHARACTERISTICS                           |                |      |           |                  |
| Anode voltage                                     | V              |      | 8         | kV               |
| Grid 2 voltage                                    | V              | 12   | 700       | V                |
| Anode current                                     | la             | -    | 2,4       | A                |
| Transconductance                                  | S              |      | 60        | mA/V             |
|                                                   | μ <sub>g</sub> | 2g1  | 8,5       |                  |
| CAPACITANCES, grounded cathode                    |                |      |           |                  |
| Input                                             | Ci             |      | 135       | pF               |
| Output                                            | C              |      | 23        | pF               |
| Anode to grid 1                                   | C              | a1   | 0.85      | pF               |

#### TEMPERATURE LIMITS

Absolute maximum envelope temperature Recommended maximum seal temperature T<sub>env</sub> max. 240 °C T max. 200 °C

#### - COOLING

| W <sub>a</sub> + W <sub>q</sub> | h    | ті | q <sub>min</sub> |              | P <sub>a</sub><br>P; | T <sub>o</sub> max |
|---------------------------------|------|----|------------------|--------------|----------------------|--------------------|
| kW                              | m    | ٥Ċ | m³/min           | tube<br>only | tube +<br>cavity     | °C                 |
| 16                              | 0    | 25 | 14               | 1300         | 1950                 | 100                |
| 10                              |      | 25 | 8                | 550          | 750                  | 100                |
| 16                              | 0    | 55 | 18               | 1900         | 2900                 | 110                |
| 10                              |      | 55 | 12               | 1000         | 1500                 | 110                |
| 16                              | 1500 | 25 | 16               | 1500         | 2200                 | 100                |
| 10                              | 1500 | 25 | 10               | 700          | 1000                 | 100                |
| 16                              | 3000 | 25 | 18               | 1500         | 2200                 | 100                |
| 10                              | 3000 | 25 | 12               | 800          | 1200                 | 100                |

For direction of air flow see outline drawing. The air should be ducted so that sufficient air is directed to the seals to keep the seal temperature below the limit.

2

# Mullard

Dimensions in mm

#### MECHANICAL DATA

Net weight: approx. 11 kg Mounting position: vertical with anode up or down



#### ACCESSORIES

type 40788A Band II amplifier circuit assembly The electrode connection arrangement allows easy grounded cathode operation.

Mullard

September 1984

| LIMITING VALUES (Absolute maximum rating system) |                 |           | nc  | otes |
|--------------------------------------------------|-----------------|-----------|-----|------|
| Frequency                                        | f               | up to 120 | MHz |      |
| Anode voltage                                    | Va              | 9         | kV  |      |
| Grid 2 voltage                                   | V <sub>g2</sub> | 1         | kV  |      |
| Grid 1 voltage                                   | $-V_{g1}$       | 500       | V   |      |
| Anode current                                    | I <sub>a</sub>  | 7         | A   |      |
| Anode input power                                | Wia             | 40        | kW  |      |
| Anode dissipation                                | Wa              | 18        | kW  |      |
| Grid 2 dissipation                               | Wg2             | 100       | W   |      |
| Grid 1 dissipation                               | Wg1             | 50        | W   |      |

#### **OPERATING CONDITIONS**, grid driven

### R.F. CLASS-AB LINEAR AMPLIFIER, SINGLE SIDEBAND, SUPPRESSED CARRIER

Unless otherwise specified the voltages are given with respect to the cathode.

| Frequency                    | f                |   |                | 30                    |                     | MHz |   |
|------------------------------|------------------|---|----------------|-----------------------|---------------------|-----|---|
| Anode voltage                | Va               |   |                | 8                     |                     | kV  |   |
| Grid 2 voltage               | V <sub>q2</sub>  |   |                | 900                   |                     | V   |   |
| Grid 1 voltage               | -V <sub>g1</sub> |   | ~              | 100                   |                     | V   | 1 |
|                              |                  |   | zero<br>signal | single tone<br>signal | double to<br>signal | ne  |   |
| Grid 1 driving voltage, peak | Vg1p             |   | 0              | < 100                 | < 100               | V   |   |
| Anode current                | la               |   | 1,2            | 2,5                   | 1,9                 | А   |   |
| Grid 2 current               | I <sub>a2</sub>  | * | 10             | 50                    | 15                  | mA  |   |
| Grid 1 current               | I <sub>q1</sub>  | ~ | 0              | 0                     | 0                   | mA  |   |
| Anode input power            | Wia              |   | 9,6            | 20                    | 15,2                | kW  |   |
| Anode dissipation            | Wa               |   | 9,6            | 9,8                   | 10                  | kW  |   |
| Output power in load (PEP)   | We               |   | -              | > 10                  | 10                  | kW  |   |
| Total efficiency             | η                |   | -              | 50                    | 33                  | %   |   |
| Intermodulation distortion   |                  |   |                |                       |                     |     |   |
| 3rd order                    | d3               |   | -              | -                     | <-40                | dB  | 2 |
| 5th order                    | d5               |   | -              | -                     | <-60                | dB  | 2 |
|                              |                  |   |                |                       |                     |     |   |

Mullard

#### Notes

1. To be adjusted to zero signal current.

2. With reference to zero dB level.

September 1984

Air cooled r.f. power tetrode for grounded cathode operation

#### YL1690



7Z62099 200  $V_{g2} = 700V$ Ig2 V<sub>g1</sub> (V) Ia = 22A 20. 100 8 16 14 12 10 0 0.5 -100 0.1 -200 Va (kV) 8 0 4 12

6

# Mullard

M84-1830/RC





**Microwave tubes** 

Photomultiplier and photo tubes

**Radiation detectors** 

ZP1322

# **GEIGER-MÜLLER TUBE**

Halogen quenched  $\gamma$  and  $\beta$  (> 0.25 MeV) radiation counter tube.

#### QUICK REFERENCE DATA

| Dose rate range            | $10^{-3}$ to $10^{2}$ | m Cu /h            |
|----------------------------|-----------------------|--------------------|
|                            | 10 - 10 10-           | mGy/n              |
| Plateau threshold voltage  | 500                   | V                  |
| Plateau length             | 150                   | V                  |
| Recommended supply voltage | 575                   | V                  |
| Chrome-iron cathode        | 32 to 40              | mg/cm <sup>2</sup> |
|                            |                       |                    |

This data must be read in conjunction with General Information Geiger-Müller tubes.

#### MECHANICAL DATA

Dimensions in mm



Fig.1



Thickness 32 to 40 mg/cm<sup>2</sup> Sensitive length 28 mm Material chrome-iron FILLING neon, argon, halogen CAPACITANCE Anode to cathode 1.1 pF

Mullard

# OPERATING CHARACTERISTICS (Ambient temperature $\approx$ 25 °C)

| Measured in circuit of Fig.2                                                          |              |           |           |  |
|---------------------------------------------------------------------------------------|--------------|-----------|-----------|--|
| Starting voltage                                                                      | max.         | 380       | V         |  |
| Plateau threshold voltage                                                             | max.         | 500       | V         |  |
| Plateau length                                                                        |              | 150       | V         |  |
| Recommended supply voltage                                                            |              | 575       | V         |  |
| Plateau slope                                                                         | max.         | 0.08      | %/V       |  |
| Background (shielded with 50 mm Pb with<br>an inner liner of 3 mm Al), at recommended |              |           |           |  |
| supply voltage                                                                        | max.         | 12        | count/min |  |
| Dead time. at recommended supply voltage                                              | max.         | 45        | μs        |  |
| LIMITING VALUES (Absolute max. rating system)                                         |              |           |           |  |
| Anode resistor                                                                        | min.         | 2.2       | MΩ        |  |
| Anode voltage                                                                         | max.         | 650       | V         |  |
| Ambient temperature<br>continuous operating                                           | max.<br>min. | +70<br>40 | оС<br>оС  |  |
| storage                                                                               | max.         | +75       | oC        |  |
| LIFE EXPECTANCY                                                                       |              |           |           |  |

Life expectancy at  $\approx 25 \ ^{o}C$ 

#### MEASURING CIRCUIT

 $R_1 = 4.7 M\Omega$  $R_2 = 100 k\Omega$  $C_1 = 1 pF$ 





Mullard

2

# J

 $5 \times 10^{10}$ 

count

ZP1322



# Mullard

ZP1322



Typical dead time as a function of supply voltage

4

# Mullard

Accessories

**Miscellaneous** devices

#### SUPERSEDES JANUARY 1982 DATA

# DRY REED SWITCH

Micro dry reed switch hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact switch is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in relays for switching main loads.

#### QUICK REFERENCE DATA

| Contact                                                         | S.P.S.T. normally open |          | 22 |   |
|-----------------------------------------------------------------|------------------------|----------|----|---|
| Switched power                                                  | max.                   | 40       | W  | - |
| Switched voltage, a.c. (r.m.s.)                                 | max.                   | 250      | V  |   |
| Switched current, resistive a.c. (r.m.s.)                       | max.                   | 1        | А  | - |
| Contact resistance (initial)                                    | max.                   | 90       | mΩ |   |
| Basic magnetic characteristics, measured with the Standard coil |                        |          |    |   |
| Operate range                                                   |                        | 30 to 65 | At |   |
| Release range                                                   |                        | 10 to 25 | At | - |

#### MECHANICAL DATA

- Contact arrangement
- Lead finish

Resonant frequency of single reed

7285567

Net mass

Mounting position

Dimensions in mm



Fig. 1.

#### Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10N).

#### Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions. The switches can also be supplied with cropped and formed leads to customer specification.



normally open

approx. 3200 Hz

approx. 0,26 g

tinned

any

3397 032 70422

#### Soldering

The contact unit may be soldered direct into the circuit but heat conducted to the glass-to-metal seals should be kept to a minimum by the use of a thermal shunt. Dip-soldering is permitted to a minimum of 6 mm from the seals at a solder temperature of 240  $^{\circ}$ C during maximum 10 s.

#### Solderability

Solderability is tested according to IEC 68-2-20, test T, solder globule method.

#### Weldability

The leads are weldable.

| - CHARACTERISTICS              |              |                               |                                        |
|--------------------------------|--------------|-------------------------------|----------------------------------------|
| Not-operate                    |              |                               |                                        |
| Breakdown voltage              | min.         | 7                             | 50 V                                   |
| Insulation resistance, initial | min.         | 1                             | $M\Omega$ (note 1)                     |
| Capacitance, without test coil | max.         | 0,                            | 20 pF                                  |
|                                | _            | coil l                        | coil II                                |
| Must-not-operate value         | max.         | 30                            | 25 At                                  |
| Operate                        |              |                               | 0.8 · · · · · · ·                      |
| Must-operate value             | max.         | 65                            | 51 At                                  |
| Operate time, including bounce | typ.<br>max. | 0,35 (note 2)<br>0,5 (note 2) | ms<br>ms                               |
| Bounce time                    | typ.<br>max. | 0,15 (note 2)<br>0,3 (note 2) | ms<br>ms                               |
| Contact resistance, initial    | typ.<br>max. | 60 (note 3)<br>90 (note 3)    | mΩ<br>mΩ                               |
| Not-release                    |              |                               | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |
| Must-not-release value         | min.         | 25                            | 22 At                                  |
| Release                        |              |                               | 2.2                                    |
| Must-release value             | max.         | 10                            | 9,5 At                                 |
| Release time                   | max.         | 30 (note 2)                   | μs                                     |
|                                |              |                               |                                        |

#### Notes

1. Measured at a relative humidity of max. 45%.

2. Measured with 80 At.

3. Measured with 40 At, distance between measuring points: 41 mm, wire resistance: typ. 1 M $\Omega$ /mm.

Mullard

4. Switching higher currents is possible depending on the signature of the load.

#### LIMITING VALUES

Absolute maximum rating systems

Switched power

Switched voltage, a.c. (r.m.s.) Switched current, resistive a.c. (r.m.s.)

Current through closed contacts

Temperature, storage and operating

# max. 40 W max. 250 V max. 1 A (note 4) max. 3,0 A max. 125 °C min. -55 °C

#### LIFE EXPECTANCY AND RELIABILITY

#### Inductive loads

- A. 220 V a.c. (r.m.s.); L = 3,95 H; R = 662  $\Omega$ ; operating freq. 2 Hz; min. 10<sup>4</sup> operations. (No sticking allowed.) With a failure rate of max. 2.10<sup>-5</sup> at 90% confidence level.
- B. 220 V a.c. (r.m.s.); L = 5,5 H; R = 2230 Ω; operating freq. 2 Hz; min. 10<sup>5</sup> operations. (No sticking allowed.) With a failure rate of max. 2.10<sup>-6</sup> at 90% confidence level.
- C. 220 V a.c. (r.m.s.); L = 0,28 H; R = 106 Ω; switching on only; operating freq. 0,6 Hz min. 2.10<sup>4</sup> operations. (No sticking allowed.) With a failure rate of max. 2.10<sup>-5</sup> at 90% confidence level.

#### **Resistive** load

A. 250 V a.c. (r.m.s.); R = 1 M $\Omega$ ; operating freq. 20 Hz; min. 2.10<sup>6</sup> operations. Contact resistance max. 100  $\Omega$  and no sticking allowed. With a failure rate of 10<sup>-7</sup> at 90% confidence level.

#### Note

Switching other loads involves different life expectancy and reliability. Consult us beforehand.

#### SHOCK AND VIBRATION

#### Impact

The units are tested according to IEC Publication 68-2-27, test Ea (peak acceleration 500 g, half sinewave). Such an impact will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

#### Vibration

The units are tested according to IEC Publication 68-2-6 test Fc, acceleration 10 g, below cross-over, frequency amplitude 0,75 mm, frequency range 10-2000 Hz, duration 90 min). Such a vibration will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

#### COILS

#### Coil I: Standard coil

5000 turns of 42 SWG single enamelled copper wire on a coil former of 25,4 mm winding length and a core diameter of 8,75 mm.

#### Coil II: Miniature coil A according to MIL-S-55433B

10 000 turns of 48 SWG single enamelled copper wire on a coil former of 19,05 mm winding length and a core diameter of 4,32 mm.











Fig. 3 Correlation of At release in standard coil and MIL coil.

Mullard

**RI-45** 



Fig. 4 Just operate values at various overall lenght compared with standard lenght of 46 mm.



Fig. 5 Just release values at various overall lenght compared with standard lenght of 46 mm.



Not repre-

in cale all




Supersedes Development Sample Data of October 1983

# DRY REED SWITCHES

Micro dry reed switch hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The switch is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in relays for switching power loads and high stand-off voltage applications.

### QUICK REFERENCE DATA

| Contact<br>Switched power                           | S.P.S.T.     | normally     | open |
|-----------------------------------------------------|--------------|--------------|------|
| types RI-46AA and RI-46A<br>types RI-46B and RI-46C | max.<br>max. | 30 W<br>40 W |      |
| Switched voltage                                    |              | 1.1.1        |      |
| d.c.                                                | max.         | 200 V        |      |
| a.c. (r.m.s.)                                       | max.         | 250 V        |      |
| Switched current, resistive d.c. or a.c. (r.m.s.)   | max.         | 1 A          |      |
| Contact resistance (initial)                        | typ.         | 90 m         | Ω    |

The RI-46 series comprises the types RI-46AA, RI-46A, RI-46B and RI-46C with the following basic magnetic characteristics, measured with the Standard coil.

|               |      | RI-46AA   | RI-46A    | RI-46B    | RI-46C         |
|---------------|------|-----------|-----------|-----------|----------------|
| Operate range | (At) | 12 to 21  | 17 to 31  | 27 to 56  | 51 to 77       |
| Release range | (At) | 5 to 14,5 | 6,5 to 19 | 9,5 to 24 | 14,5 to 26,5 🛥 |

## MECHANICAL DATA



#### Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10N).

#### Mounting

9397 032 80422

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions. The switches can also be supplied with cropped and formed leads to customer specification.



#### Soldering

The switch may be soldered direct into the circuit but heat conducted to the glass-to-metal seals should be kept to a minimum by the use of a thermal shunt. Dip-soldering is permitted to a minimum of 3 mm from the seals at a solder temperature of 240 °C during maximum 10 s.

#### Solderability

Solderability is tested according to IEC publication 68-2-20, test T, solder globule method.

#### Weldability

The leads are weldable.

- CHARACTERISTICS RI-46AA

The RI-46 series comprises four types: RI-46AA, RI-46A, RI-46B and RI-46C.

| Not-operate                    |              |                               |                 |                    |
|--------------------------------|--------------|-------------------------------|-----------------|--------------------|
| Breakdown voltage              |              | see releva                    | ant graph       |                    |
| Insulation resistance, initial | min.         |                               | 10 <sup>6</sup> | $M\Omega$ (note 1) |
| Capacitance, without test coil | max.         | 0,                            | .25             | pF                 |
|                                |              | coil I                        | coil II         |                    |
| Must-not-operate value         | max.         | 12                            | 13              | At                 |
| Operate                        |              |                               | -               |                    |
| Must-operate value             | max.         | 21                            | 19              | At                 |
| Operate time, including bounce | typ.<br>max. | 0,35 (note 2)<br>0,5 (note 2) |                 | ms<br>ms           |
| Bounce time                    | typ.<br>max. | 0,15 (note 2)<br>0,3 (note 2) | E.              | ms<br>ms           |
| Contact resistance, initial    | typ.<br>max. | 60 (note 3)<br>90 (note 3)    | 1-2-5           | mΩ<br>mΩ           |
| Not-release                    |              |                               |                 |                    |
| Must-not-release value         | min.         | 14,5                          | 13              | At                 |
| Release                        |              |                               | 1.00            |                    |
| Must-release value             | max.         | 5                             | 6,5             | At                 |
| Release time                   | max.         | 30 (note 2)                   |                 | μs                 |
|                                |              |                               |                 |                    |

Notes

- 1. Measured at a relative humidity of max. 45%.
- 2. Measured with 1,25 times the max. must-operate value per group.
- 3. Measured with 30 At, distance between measuring points: 41 mm. Wire resistance typ. 1,0 m $\Omega$ /mm.
- 4. Measured with 40 At, distance between measuring points: 41 mm. Wire resistance typ. 1,0 m $\Omega$ /mm.

August 1984

Mullard

CHARACTERY NCS RL 4

#### **CHARACTERISTICS RI-46A**

#### Not-operate

| Breakdown voltage              |      | see releva    | int grapl    | h       |         |
|--------------------------------|------|---------------|--------------|---------|---------|
| Insulation resistance, initial | min. | 1             | 06           | MΩ (r   | note 1) |
| Capacitance, without test coil | max. | 0,2           | 20           | pF      |         |
|                                |      | coil I        | coil II      |         |         |
| Must-not-operate value         | max. | 17            | 16           | At      |         |
| Operate                        |      |               |              |         |         |
| Must-operate value             | max. | 31            | 26           | At      |         |
|                                | typ. | 0,35 (note 2) |              | ms      |         |
| Operate time, including bounce | max. | 0,5 (note 2)  | 10 10 - a 10 | ms      |         |
| Bounce time                    | typ. | 0,15 (note 2) |              | ms      |         |
| C. Charles in                  | max. | 0,3 (note 2)  |              | ms      |         |
| Contact resistance, initial    | typ. | 60 (note 3)   |              | mΩ      |         |
| No. 1 No. 1 No. 1 No. 1        | max. | 90 (note 3)   |              | 1112.2  |         |
| Not-release                    |      |               |              | 1.1.1   |         |
| Must-not-release value         | min. | 19            | 17           | At      |         |
| Release                        |      |               |              |         |         |
| Must-release value             | max. | 6,5           | 7,5          | At      |         |
| Release time                   | max. | 30 (note 2)   | 10.18        | μs      |         |
| CHARACTERISTICS RI-46B         |      |               |              |         |         |
| Not-operate                    |      |               |              |         |         |
| Breakdown voltage              |      | see releva    | nt graph     | ı       |         |
| Insulation resistance          | min. | 10            | 06           | MΩ (I   | note 1) |
| Capacitance, without test coil | max. | nax. 0,20 pF  |              | pF      |         |
|                                |      | coil I        | coil II      | and the |         |
| Must-not-operate value         | max. | 27            | 23           | At      |         |
| Operate                        |      |               |              |         |         |
| Must-operate value             | max. | 56            | 44           | At      |         |
| Operate time, including bounce | typ. | 0,35 (note 2) |              | ms      |         |
|                                | tup  | 0,5 (note 2)  |              | ma      |         |
| Bounce time                    | max. | 0.3 (note 2)  |              | ms      |         |
|                                | typ. | 60 (note 4)   |              | mΩ      |         |
| Contact resistance, initial    | max. | 90 (note 4)   | 1000         | mΩ      |         |
| Not-release                    |      |               | 0,7.00       |         |         |
| Must-not-release value         | min. | 24            | 20,5         | At      |         |
| Release                        |      |               | 121 1        |         |         |
| Tielease                       |      |               | 1000         |         |         |
| Must-release value             | max. | 9,5           | 9,5          | At      |         |



| • | CHARACTERISTICS RI-46C                       |       |              |                               |            |                    |  |  |
|---|----------------------------------------------|-------|--------------|-------------------------------|------------|--------------------|--|--|
|   | Not-operate                                  |       |              |                               |            |                    |  |  |
|   | Breakdown voltage                            |       |              | see releva                    | want graph |                    |  |  |
|   | Insulation resistance, initial               |       | min.         | 1                             | 06         | $M\Omega$ (note 1) |  |  |
|   | Capacitance, without test coil               |       | max.         | 0,2                           | 20         | pF                 |  |  |
|   |                                              |       |              | coil l                        | coil II    |                    |  |  |
|   | Must-not-operate value                       |       | max.         | 51                            | 40         | At                 |  |  |
|   | Operate                                      |       |              |                               |            |                    |  |  |
|   | Must-operate value                           |       | max.         | 77                            | 58         | At                 |  |  |
|   | Operate time, including bounce               |       | typ.<br>max. | 0,35 (note 2)<br>0,5 (note 2) |            | ms<br>ms           |  |  |
|   | Bounce time                                  |       | typ.<br>max. | 0,15 (note 2)<br>0,3 (note 2) |            | ms<br>ms           |  |  |
|   | Contact resistance, initial                  |       | typ.<br>max. | 60 (note 4)<br>90 (note 4)    | 10.000     | mΩ<br>mΩ           |  |  |
|   | Not-release                                  |       |              |                               |            |                    |  |  |
|   | Must-not-release value                       |       | min.         | 26,5                          | 22,5       | At                 |  |  |
|   | Release                                      |       |              |                               | 1.51       |                    |  |  |
|   | Must-release value                           |       | max.         | 14,5                          | 13,0       | At                 |  |  |
|   | Release time                                 |       | max.         | 30 (note 2)                   |            | μs                 |  |  |
|   | LIMITING VALUES                              |       |              |                               |            |                    |  |  |
|   | Absolute maximum rating system               |       |              |                               |            |                    |  |  |
|   | Switched power                               |       |              |                               |            |                    |  |  |
|   | types RI-46AA and RI-46A                     |       | max.         |                               | 30         | W                  |  |  |
|   | types RI-40B and RI-40C                      |       | max.         |                               | 40         | VV                 |  |  |
|   | d.c.                                         |       | max          |                               | 200        | V                  |  |  |
|   | a.c. (r.m.s.)                                |       | max.         |                               | 250        | v                  |  |  |
|   | Switched current, resistive d.c. or a.c. (r. | m.s.) | max.         |                               | 1          | A (note 5)         |  |  |
|   | Current through closed contacts              |       |              |                               |            |                    |  |  |
|   | type RI-46AA                                 |       | max.         |                               | 2,0        | A                  |  |  |
|   | type RI-46A                                  |       | max.         |                               | 2,5        | A                  |  |  |
|   | type RI-46B                                  |       | max.         |                               | 3,0        | A                  |  |  |
|   | type m-400                                   |       | max.         |                               | 3,0        | A<br>00            |  |  |
|   | Temperature, storage and operating           |       | max.         |                               | -55        | 90                 |  |  |
|   |                                              |       |              |                               | 00         | 0                  |  |  |

Excursions up to 150 °C may be permissible. Consult us.

Notes

1. Measured at a relative humidity of max. 45%.

2. Measured with 100 At.

3. Measured with 30 At, distance between measuring points: 41 mm. Wire resistance typ. 1,0 m $\Omega$ /mm.

4. Measured with 40 At, distance between measuring points: 41 mm; Wire resistance typ. 1,0 mΩ/mm.

5. Switching higher currents is possible depending on the signature of the load.

Mullard

### LIFE EXPECTANCY AND RELIABILITY

The life expectancy data mentioned below are given at a coil energization of 1,5 x the published must-operate value for each group. Coil energization above 1,5 x will result in better life performance.

For life expectancy data end of life is defined as being reached when either:

- (a) the contact resistance exceeds either 1  $\Omega$  for no-load conditions or 2  $\Omega$  for loaded conditions, measured 3 ms after energizing coil; or
- (b) the release time exceeds 3 ms after de-energizing the coil (latching or contact sticking).

#### No-load conditions (operating frequency 100 Hz)

Life expectancy min.  $10^7$  operations with a failure rate of less than  $10^{-9}$  with a confidence level of 90%. After each operation (a) and (b) are tested.

#### Loaded conditions (resistive load: 20 V -500 mA, operating frequency 125 Hz

Life expectancy min. 2,5 x  $10^7$  operations with a failure rate of less than  $10^{-8}$  with a confidence level of -90%. After each operation points (a) and (b) are tested.

#### Note

Switching other loads involves different life expectancy and reliability. Consult us beforehand. Currents between 50 and 200 mA may result in a reduced life expectancy.

#### SHOCK AND VIBRATION

#### Impact

The units are tested according to IEC Publication 68-2-27, test Ea (peak acceleration 500 g, half sinewave). Such an impact will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

#### Vibration

The units are tested according to IEC Publication 68-2-6 test Fc, acceleration 10 g, below cross-over, frequency amplitude 0,75 mm, frequency range 10-2000 Hz, duration 90 min). Such a vibration will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

#### COILS

#### Coil I: Standard coil

5000 turns of 42 SWG single enamelled copper wire on a coil former of 25,4 mm winding length and a core diameter of 8,75 mm.

### Coil II: Miniature coil A according to MIL-S-55433B

10 000 turns of 48 SWG single enamelled copper wire on a coil former of 19,05 mm winding length and a core diameter of 4,32 mm.





Fig. 2 Minimum breakdown voltage with pre-ionisation as a function of ampere-turns.







Mullard

### August 1984

6





just operate value (At) at L = 46 mm 





200498-04-04

The second states of the

## DATA SERVICE

The Mullard Data Service aims to bring you a regular flow of data concerning the operating characteristics, performance, and applications of the Electronic Components, Sub-assemblies, and Materials marketed by Mullard in the UK.

The well-established Mullard Technical Handbook system forms the basic core of the Data Service. This system is made up of four books, each comprising several parts and each with its own characteristic colour identification on the cover, viz:-

| Book 1 | Semiconductor devices                 | Blue   |
|--------|---------------------------------------|--------|
| Book 2 | Tubes                                 | Orange |
| Book 3 | Components, materials, and assemblies | Green  |
| Book 4 | Integrated circuits                   | Purple |

These books contain all pertinent data available at the time of publication and are revised and reissued periodically.

The purpose of the Data Service is to keep you up-to-date on any additions and/or changes in device specification made during the currency of any edition of a handbook, by issuing supplementary data sheets. The handbook part to which the supplementary data sheet relates is indicated by the filing instruction printed on the front page of each data sheet. The instruction, which is found between the punched holes, indicates to which binder the data sheet belongs (Blue, Orange, Green, or Purple) and the number of the divider card under which it should be filed.

An index sheet will be issued periodically to keep you informed as to the current status of the contents of your binder(s), and the dates on which the revised editions of the handbook parts are due to be issued.

If you need confirmation that the published data about any of our products are the latest available, please contact your area salesman or Mullard representative.

All enquiries relating to this service are to be made to:-

Technical Publications Department, Mullard Limited, New Road, Mitcham, Surrey CR4 4XY

The data contained in this booklet are as accurate and up-to-date as it is reasonably possible to make them; it must however be understood that no guarantee can be given here regarding the availability of the various devices or that their specifications may not be changed before the next edition is published.

Information regarding price and availability of devices must be obtained from our authorised agents or from our representatives.

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

