Specification MAP/CV70/Issue 4
Dated 15.1.49
To be read in conjunction with K1001
ignoring clauses: - 5.2, 5.3.

SECURITY

Specification
RESTRICTED
UNCLASSIFIED

Indicates a change

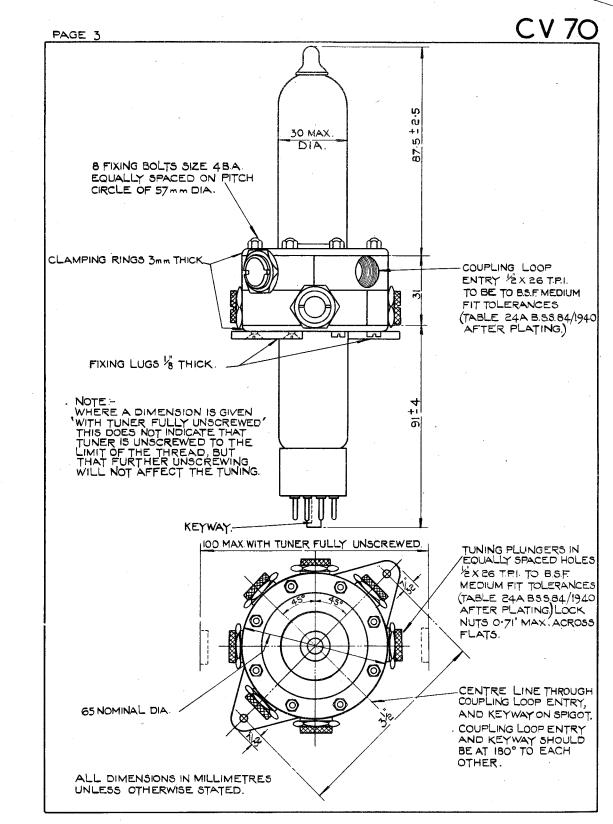
- Indicates a change											
TYPE OF VALVE CATHODE ENVELOPE	Transmitting Klystron Indirectly Heated Metal/Glass	MARKING See K1001/4									
PROTOTYPE	9PK2	PACKING See K1005									
	RATING	Note	<u>Base</u> I.O.								
Filament Voltage (V) Filament Current (A) Max. Peak Anode Voltage (kV) Max. Collector Dissipation (W)				Pin 1 2 3 4 5 6 7 8 T.C.	Electrode No Connection Heater No connection No connection No connection No connection Heater and cathode No connection Collector						
			TOP CAP See K1001/AI/D5.2 DIMENSIONS See drawing on page 3								

NOTES

- A The terms anode and resonator are synonymous.
- B The valve is now obsolete. When the type was manufactured however the type number was followed by a letter indicating the frequency to which the valve was set up, as follows:-
 - A indicated valve was set up to 3240 Mc/s
 - B indicated valve was set up to 3210 Mc/s
 - C indicated valve was set up to 3180 Mc/s
 - D indicated valve was set up to 3150 Mc/s

This valve type is obsolete and this specification is for record purposes only

CV70


To be performed in addition to those applicable in K1001

	Test Conditions		Tests	Limits		No.	Notes	
					Min. Max.		Tested	
	$v_{ m h}$	Ve(kV)	Vr(kV)					The state of the s
а	4.0	0	0	I _h (A)	2.25	2 .7 5	100%	
b(1) b(2)	4.0	12.0	12.0	Collector + resonator current say Ia. Value to be noted (mA) Note value of collector current say Ib. (mA)	1.0	1.3	100%	1
С	From measurements made in test (b)			Value of I _b /Ia	0.93 <u>+</u> 4%		100%	1
đ	4.0	12.0	12.0	Peak power output (kW)	1.5	-	100%	2,3

NOTES

- 1 In tests (b) and (c) above the anode voltage shall be pulsed with a pulse length of 3.0 µsec. and p.r.f. 460 per sec. These tests shall be performed either without the resonators or with detuned resonators because the collector current diminishes when the valve goes into oscillation. All the figures refer to non-oscillating conditions.
- 2 In test (d) the anode voltage shall be pulsed in the same manner as in tests (b) and (c) and the resonators shall be tuned to the frequency required according to the marking.
- 5 Comparative measurements of output should be made by means of a lamp.

 For this measurement the size of the coupling loop should be such that maximum output is obtained with the loop orientated to a position such that its plane is at an angle of 100 to a plane containing the principal axis of the resonator and the centre line of the coupling loop entry.

