Page 1 (No. of pages 2) MINISTRY OF SUPPLY (S.R.D.E.) VALVE ELECTRONIC CV444 Specification: - MOS/CV444/Issue 2 SECURITY TENTATIVE: - Dated 14.3.50 Specification Valve To be read in conjunction with K1001 excluding clauses 5.2: 5.8: 7.2 RESTRICTED UNCLASSIFIED TYPE OF VALVE - Triode MARKING CATHODE - Directly heated See K1001/4 oxide coated. ENVELOPE - Glass-unmetalised PACKING PROTOTYPES - E1954 See K1005 MZ1-75 BASE See Kl001/AIV/D7 RATING Note CONNECTIONS Filament Voltage 10.0 Filament Current 2.0 Pin Electrode Max. Anode Voltage (kV) 1,25 Max. Anode Dissipation (\mathbb{W}) 75.0 Grid Anode Impedance 2200 Λ Filament Amolification Factor 13.0 3 Λ Anode Mutual Conductance (mA/V) 6.0 Λ Filament CAPACITANCES (pF) DIMENSIONS Cag 14.3 See Kl001/AI/DI Caf 4.3 Cgf 11.5 Dimension Min. Max В mm) 65.0 mm' 172.5 $\frac{\text{NOTES}}{\text{Ia} = 75} \text{ mA}$ At Va = 1.0 kV.

B. This valve should be mounted so that the plane of the filament is vertical

To be performed in addition to $\frac{\text{TESTS}}{\text{those}}$ applicable in KlOOl

The state of the s									
	Tes	t Cond	litio	ns	Test		I	Limits	
a	See	See KlOOl/AIII			CAPACITANCE:		Min.	Max.	Tested.
			· ·		Cag Caf Cgf	- (1-)		16.25 5.0 14.0	т.А.
	Vf (AC)	Va	V	g Ia (m/.	. 1				
b	10.0	0	0	0	If	(A)	1.37	2.5	100%
C	10.0	1000	-	100	Is to be mainsteady for the minutes. At of this peringular reverse grid rent must no rising. Reversid current of test.	wo the end od the cur- t be erse		15	100%
đ	10.0	1.000	_	7 5	Vg	(v)	48	72	100%
е	10.0	1000		50	μ		11.4	14.8	100%
f	10.0	1000	Vary	75	Gm (Note 1)	(m A∕ ∇)	4.7	7.1	100%
g	10.0	125 (AC)	125 (AC)	-	Ic (Mean)	(m A)	300	-	100%

NOTES

1. Obtained by varying Vg by not more than + 2 volts from mean.