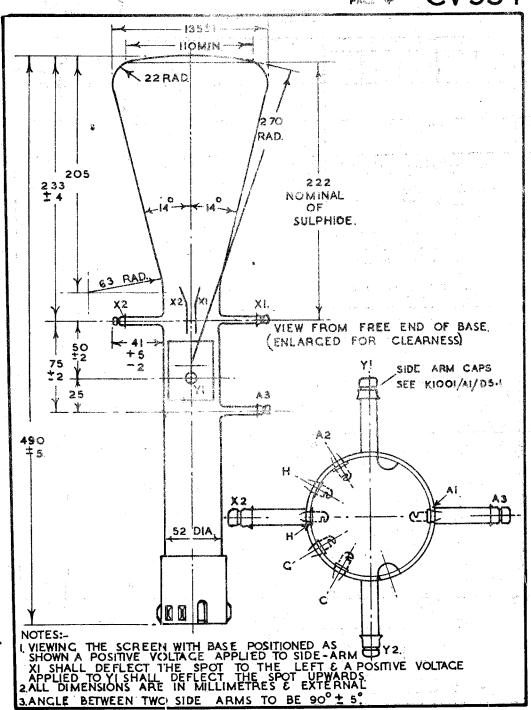
VALVE ELECTRONIC CV954

ADMIRALTY SIGNAL ESTABLISHMENT

Specification AD/CV954/Issue 2. SECURITY				
Dated 1.2.46.	Specification	Valve		
To be read in conjunction with K1003.	Restricted	Restricted		

TYPE OF DEFLECTION: - Electr TYPE OF FOCUS: - Electr BULB: - Intern coate condu coati SCREEN: - WWN23 (See PROTOTYPE: - 3220K.	MARKING See K1003/7.				
RATING			BASE AND CONNECTIONS		
	6-clip base.				
Heater Voltage (V)	4.0		Pin	<u>Electrode</u>	
Heater Current (Approx)(A)	1.1		1	Cathode	
Max. Va1 (kV)	3. 0.	B	2	Modulator	
Max. Va2 (focus) (V)	700		3	Heater	
Max. Va3 (kV)	3.0		4	Heater	
Modulator Voltage (Vg)(V)	-25		5	Anode 2	
X-plate sensitivity (mm/V)	600		6	Anode 1	
	Va3		TOP CAPS AND DIMENSIONS See drawings; page 4.		
Y-plate sensitivity (mm/V)	675 V a3				

NOTES


- A. The construction of the screen shall be such that, when it bears two superimposed traces with any recurrence frequency up to 3,000 per second, the building up of electric charges on the screen shall not cause any appreciable distortion of one trace by another.
- B. The first accelerating anode may be omitted, if desired.

TESTS

To be performed in addition to those applicable in K1003.

	Test Conditions					Limits		No.	
	Vh (V)	Va3 (kV)	Va2	Va1 (kV)	V g (V)	Test	Min.	Mex.	Tested
а	See K1003/5.12.			Removalle process in fragment	Capacitances (pF) (i) Each X-plate to all others.		16		
					(ii) Each Y-plate to all	-	12	10% (20)	
						others. (iii) Either X- plate to either Y- plate.	-	4	
ъ	4.0	-	_		-	Ih (A)	1.0	1.2	100%
С	4.0	3.0	Ad- jus- ted		Ad- jus- ted	(i) Va2 (V) (ii) Line width (to be with- in 2.5 cms.	er than	700 be great- that of ard tube.	
	Adjust Va2 for optimum focus and Vg to give a spot brilliance equal to that of a standard			e a al	of centre of tube). (iii) Uniformity	The focus and		100%	
	tube. Deflecting vol- tages applied to give an open raster travers- ing the working area of the screen. Values of Va2 and Vg to be noted.			ol- ve ers- a of of	of focus and bril- liance.	brillian be unifor the area 2.5 cms. centre			
In all tests below, unless otherwise stated, conditions shall be as in test 'c'.									
đ	Vg adjusted for visual cut-off, or to give a cathode current, neglecting leakage, of 0.1 ALA.			a	(i) Vg (V) (ii) Change in Vg from value found in test 'c'.	4	-25 15	100%	
е	See	See K1003/5.4.2.				Modulator Insulation (M Ω)	5	-	100%
f						Plate sensitivi- ties (mm/V). (i) X-plates.	<u>550</u> Va3	650 Va3	100%
						(ii) Y-plates.	<u>550</u> Va 3	800 V a3	

	Test Conditions	and a state of the	Lim:	No.			
	Vh Va3 Va2 Va1 Vg (V) (kV) (kV) (V)	Pest	Min.	Max.	Tested		
8		Angie between X- and Y-plate axes.	-85°	95°	100%		
h	See K1003/5.10.	Centring (mm deviation).		7.5	100%		
· period	 (i) Brilliance varied from min. to max. (ii) Va3 altered between 2,700 and 3,300 V. (iii) VX1 = VX2 = + 10 V. (iv) Waves of form shown on Fig.1 below applied to one X-plate. (v) Tube tapped vigorously. 	(11444)	During of (i)-(v) shall no in the 1 direction than 0.5	100%			
C.3.	+ 4,000 V to be con- nected between any one deflecting plate and final anode; the re- maining three deflect- ing places being con- nected to the final anode.	High deflecting plate voltage.	No internal breakdown or deterioration shall occur.		100%		
, k	(i) X raised to -2000 V with respect to A3 & X2. (ii) X2 raised to -200 V with respect to X1. (iii) X1 raised to +5 V with respect to X2. (iv) X2 raised to +5 V with respect to X1	Deflector plate conductivity (MA)	The state of the s	1.0	100%		
	Volts + 100						

