Page 1. (No. of pages: - 5)

ADMIRALTY SIGNAL ESTABLISHMENT

VALVE ELECTRONIC

CV959

(NC10)

Specification AD/CV959/Issue 2. SECURITY			
Dated 1.2.46. Specification V			
To be read in conjunction with K1003.	Restricted	Restricted	

TYPE OF DEFLECTION:- Electron TYPE OF FOCUS:- Electron Coate Conduction Coate Conduction Coate C	MARKING See K1003/7. PACKAGING SEE KIDOS			
RATING	BASE AND CONNECTIONS 6-clip base.			
Heater Voltage (V)	4.0		Pin	Electrode
Heater current (Approx)(A) Max. Va1 (kV) Max. Va2 (focus) (V) Max. Va3 (kV) Modulator voltage (Vg) (V) X-plate sensitivity (mm/V)	1.1 3.0 700 3.0 -30 600	В	123456	Cathode Modulator Heater Heater Anode 2 Anode 1
Y-plate sensitivity (mm/V) $\frac{Va3}{675}$ $\frac{675}{Va3}$				CAP AND DIMENSIONS awings; page 5.

NOTES

- A. The construction of the screen shall be such that, when it bears two superimposed traces with any recurrence frequency up to 3,000 per second, the building up of electric charges on the screen shall not cause any appreciable distortion of one trace by another.
- B. The first accelerating anode may be omitted, if desired.

TESTS

To be performed in addition to those applicable in K1003.

		وختانهم	Condi			Test		Lim	No.	
	Vh (V)	Va3 (kV)	Va2	Va1 (kV)	Vg (V)			Min.	Max.	Tested
а	See	K1003	/5.12	•	Capacitances (pF) (i) Each X- plate to			16		
						(ii) Each plate	to to	-	12	10% (20)
	-					all ((iii) Eithe plate eithe plate	e to er Y-	-	4	(20)
ъ	4.0					Ih prace	(A)	. 0. 7	1.2	100%
c	4.0	3.0	Ad-	3.0	Ad-	(i) Va2	(V)	400	700	
	Just ted ted Adjust Va2 for optimum focus and Vg to give a spot brilliance equal to that of a standard tube. Deflecting voltages applied to give an open raster traversing the working area of the screen. Values of Va2 and Vg to be noted.			cms o		Not to preater twice the standard	than hat of a			
				(iii) Unifo of fo and b liano	ormity ocus oril-	The foct brillian be unifor the area 2.5 cms centre	100%			
In all tests below, unless otherwise stated, conditions shall be as in test 'c'.								be as		
đ	Vg adjusted for visual cut-off, or to give a cathode current, neglecting leakage, of 0.1 µA.					<u>-</u> 4	-30 15	100%		

	Test Conditions		Lim:	No.		
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Test	Min.	Max.	Tested	
е	See K1003/5.4.2.	Modulator Insulation (M Ω)	5	- ·	100%	
f		Plate sensitivi- ties (mm/V) (i) X-plates. (ii) Y-plates.	550 Va3 550 Va3	650 Va3 800 Va3	5% (2)	
g		Angle between X- and Y-plate axes.	85 ⁰	95°	100%	
h	See K1003/5.10.	Centring (mm deviation).	-	7•5	100%	
i	(i) Brilliance varied from min. to max. (ii) Va3 altered between 2,700 and 3,300 V. (iii) VX1 = VX2 = +10 V. (iv) Waves of form shown on page 4 applied to one X-plate. (v) Tube tapped vigorously.	Deviation of spot position (mm)	During operation (i)-(v) the spot shall not move in the X axis direction more than 2.0 mm.			
7	+ 4,000 V to be con- nected between any one deflecting plate and final anode; the re- maining three deflec- ting plates being connected to the final anode.	High deflecting plate voltage.	No inter breakdow deterior shall oc	m or ration	100%	

CV959

TESTS (Contd.)

	Test Conditions Vh Va3 vr. 0 Va1 Vg	Test	Limi	its	No.
	$\begin{pmatrix} Vh & Va3 \\ (V) & (kV) \end{pmatrix} Va2 \begin{pmatrix} Va1 & Vg \\ (kV) & (V) \end{pmatrix}$	les t	Min.	Max.	Tested
k	(i) X raised to -2000 V with respect to A3 & X2. (ii) X2 raised to -200	Deflector plate conductivity (µA)	Mary	10.0	100%
	V with respect to X1. (iii) X1 raised to +5 V with respect to X2				
	(iv) X2 raised to +5 V with respect to X1			and the second s	
		•	,		
	Volts				
+	100				
	(1)		<u> -</u> 1/	50th->	
·	1/50th- sec.	-	(11)	sec.	
_				-	
	1				

