Page 1. (No. of pages :- 4). ADMIRALTY SIGNAL ESTABLISHMENT.

CATHODE-RAY-TUBE NC 14

Specification AD/6576,	SECURITY OF TUBE.	To be read in conjunction with
Issue No.1,		K1003.
Dated 3rd March, 1944.	Non-Secret.	

both sym	atic, suita metrical a crical opera	nd	MARKING NC14 N6601			
de la como co	y coated wi					
SCREEN :- To give a	blue trace	e. [BASE			
PROTOTYPE :- VCR97 wit	VCR97 with different			12-side Contact Type.		
screen.			Contact	T Electrode		
RATING		Note	1 2	Mod C		
Heater Voltage (V)	4.0) 	H		
Heater Current (A)	1.0		5	Ä		
Maximum final anode voltage (kV)	2.5		6	A2		
Desirable spot size (mm)	1.0		7	Coating		
I-plate sensitivity (mm/V)	600 Va3		8	¥2		
			9	12		
Y-plate sensitivity (mm/V)	1140 Va3		10	A3		
	ره ر		11	X 1		
Typical Operating Conditions.			12	T1		
Final Anode Voltage (kV)	2.0		See Note C.			
Second Anode Voltage (V)	350	<u> </u>	DIMENSIONS.			
First Anode Voltage (kV) Beam Current (AA)	2.0 20.0		See page 4.			

notes

- A. The tube shall be adequately free from microphony.
- B. The internal conductive coating shall be of such dimensions that it functions effectively but does not obscure the required useful screen area.
- C. The tube will normally be operated with A1, A3 and conductive coating tied, and if a manufacturer so desires, any or all of these electrodes may be strapped internally, with the connections omitted from contacts marked: -

"Internal conductive coating," or "A1".

D. The neck diameter may be reduced to a minimum of 58 mm. provided that rubber rings or other approved packing is supplied with the tube to bring the overall diameter within the stated tolerances.

TESTS.

To be performed in addition to those applicable in K1003.

	Test Conditions							Lip	No.	
	Vh	Va3 (kV)	Va2	Val	Vg		Test	Min.	Max.	Tested
8	į					(1) E	acitances (pF) ach X or Y plate to all other electrodes.	- ,	25	5% (10)
						(2) 0	rid to all other electrodes.	•	25	5% (10)
						· · ·	ne X to one Y plate,	•	5	5% (10)
b	See K1003/5.4.3. Test Voltage = 100V.						Ih-c (ALA).		100	100%
c	4.0	o	0	0	0		îh (A)	0.8	1.3	100%
d	4.0 2.0 Adjust 2.0 Adjust ed. Adjust Va2 for optimum focus and Vg to give a spot brilliance equal to that of a standard tube on a			(1)	The line width shall not be greater than that of a standard tube.					
	scan length of 100 mm. in the X direction and 85 mm. in the Y direction successively.				(2) (3)	Va2 (V) Vg (V)	250 450 To be at least 5 V -ve to cathode.		100% 100%	
6	4.0	2.0	As in	2,0	Ad just-	(1)	Vg (V)		-80	100%
			test		ed to: give cut-off.	(2)	Increase in negative value of Vg from test (d(3)).	•	50	100%
ţ	4.0	2.0	As in test	2.0	=80	(1)	Grid leakage current (ALA)	***	8,	100%
	5 ee	 K1003/5	.4.2. = 10 me		resistor	(2)	Increase in voltmeter reading.	. •	100%	100%

GVSHA,

TESTS (Continued).

		Tes	t Condit	ions			Linits		No.
	٧'n	Va3 (kV)	Va2	Vai (kV)	Vg	Test	Min.	Kex.	Tested
g	4.0	2.0	As in	2.0	Any	DEFLECTION SEASITIVITIES			
			test 'd'.		ient value.	(1) X plates (mm/V)	540 Va3	660 Vn3	10% (10)
			-			(2) Y places (mm/V)	10 <u>26</u> Va3	1234 Va3	10% (10)
h	4.0	2.0	As in test	2.0	Any conven- ient value.	Deviation of spot from centre of screen (mmm).	•	10	100%
3	4.0	2.0	As in	2.0	Any	USEFUL SCREEN AREA.	and and the second section of the second		A STATE OF THE PARTY OF THE PAR
			test		conven-	(1) X deflection (mm).	<u>+</u> 60		100%
					value.	(2) Y deflection (1994).	± 40		100%
k	4.0	2.0	As in test	2.0	Any conven-	ORIENTATION OF AXES OF DEFLECTION.			
	į				value.	(1) X axis	80°	100°	100%
	•		red relat in drawir			(2) Y axis	-10 ⁰	 10°	100%
1	4.0	2.0	As in	2.0	Any	TRAPEZOIDAL DISTORTION.			
			test di.		ient value.	(1) Angle between adjacent sides.	85°	95 [©]	100%
				• • • • • • • • • • • • • • • • • • • •		(2) Angle between opposite sides.	175°	185 ⁰	100%
m	4.0	2.0	As in test	2.0	***	<u>LIFE TEST.</u> Life (hours).	500	45	As re- quired
	spot		tness and nt over a 80 mm.						darkea

