Specification MAP/CV1090/Issue 3	SECURTIY		
Dated 1,12.49. To be read in conjunction with K1001.	Specification RESTRICTED	<u>Valve</u> UNCIASSIFIED	4

Indicat	tea :	9 6	han	œ.
	0 A 80 I			80

TYPE OF VALVE: - Triode CATHODE - Directly heated - thoristed tungston.			MARKING See K1001/4 PACKING See K1005			
ENVELOPE - Metal - glass con						
RATING		Note a	BASE None			
Filament Voltage (V) Filament Current (A) Max. Anode Voltage (EV) Max. Anode Dissipation (W) Amplification Factor Max. Operating Frequency (Mo/s)	8.25 7.0 9.0 100 16 300	B	Dimensions and Connections See Drawing on Page 4.			
CAPACITANCES (pf) Cag Cgf Caf	3.75 2.20 0.90					

NOTES

- A:- At Va = 1.0kV., Ia = 100mA.
- B:- Forced air cooling must be provided so that the temperature of the anode radiator does not exceed 140°C., measured at the junction of the anode and the cooling fins. A suitable air flow is approx. 8 cu.ft. per minute with a pressure drop across the valve of the order of 1½ inches of water. Forced air cooling must be applied before the filament is switched on.
- C:- The valve must be mounted vertically.
- D:- The attention of equipment designers is drawn to the fragility of the valve seals, and consequently special care should be exercised in the mechanical design of associated circuits.

CVIO90 TESTS
To be performed in addition to those applicable in Klool.

Test Conditions			Test		Idm Min.	its Max.	No. Tes- ted	Note		
	For the following tests forced air cooling shall be provided so that the temperature of the anode radiator shall not exceed 140°C. measured at the junction of the anode and cooling fins. A suitable air flow is 8 cu. ft. per minute with a pressure drop across the valve of the order of 11/2 inches of water.									
A Company of the Comp	Vf 8, 25	Va Raised slowly to 10 kV. and main- tained until flash- ing ceases	Vg Frefer ably auto- matio bias	Ia(mA) - Any value between 0.5 and 3.0	HOT FLASH PR Anode voltag tained at 10 a period of during which the valve sh give any ind of breakdown	e main- kv.for 2 mins. time all not ication			100%	1
Ъ	8,25 (A,C)	0	0		If	(A)	6.4	7.6	100%	
c	8.25 (A.C)	1000	***	100	Reverse Igl	(µA)		10	100%	
đ	8.25 (A.C)	1000	•	100	Vgl	(v)	-19.0	-29.0	100%	
•	8,25 (A,C)	700	600	100	Change in Vg value obtain test (d)		16	22	1% (1)	
f	e=	1000	-	10	V.f	(v)	***	3. 5	100%	
g	8. 25	Strapped, Peak applied Voltage 150. Test to be performed by an approved method.		3	Peak Space Current	(A)	5		100%	2
h	8.25 (A.C)	0	-3000	-	Reverse Igl	(µA)	-	20	100%	
J	8.25 (A.C)	•	-104	4	Va.	(v)	1325	1700	100%	2
k	k See Kl001A/III. Measured using Adaptor type 100. Ref. 10A/17529		CAPACITANCES	(pf)			,			
	Links H. P.		Links to Links to E							
	2	distribution of soliday, of the		1,4,5,6,7 8,9,10 TC1, TC2	1. Cag		3.0	4.5	1% (1)	
	3	1	.,5	2,4,6,7,8 9,10 TC1, TC2	2. Cgf		1.5	2.9		

NOTES

- Once the conditions specified in test clause (a) have been met, the test conditions need not be repeated for acceptance testing. For this hot flash process there shall be a 500 ohms resistor in series with the applied voltage and a capacitance of 0.15 μF. in parallel with the supply voltage on the supply side of the resistor.
- 2. The valve shall be subjected to either test (1) or test (g)

VALVES TYPES VT90 & CV46.

NOTE 1: THIS DIMENSION SHALL INCLUDE ANY RIGIDITY OF THE FILAMENT LEADS DUE TO THE SPREAD OF SOLDER FROM THE CONNECTIONS WITH THE TUNGSTEN LEAD OUT WIRES

ALL DIMENSIONS IN TOTAL UNLESS OTHERWISE STATED.