MINISTRY OF SUPPLY D.L.R.D.(A)/R.A.E. ## VALVE ELECTRONIC CV1518 Specification MOSA/CV1518 Issue 5 Dated 5.7.56 To be read in conjunction with B.S.448, B.S.1409 and K.1001. SECURITY Specification Valve UNCLASSIFIED UNCLASSIFIED ## Indicates a change | | | | The state of s | THE RESERVE THE PARTY NAMED IN | | | |---|---|--|--|--------------------------------|----------------------------|-----------------------------| | | TYPE OF DEFLECTION - E | athode Ray Tube | MARKING
See K.1001/4 | | | | | | a
X
a | Plates suitable symmetrical definition of plates suitable symmetrical and effection. | flection of
le for bot | h | | <u>BASE</u>
B.S.448/B12B | | | BULB - G | lectrostatic
lass, unmetalli | CONNECTIONS | | | | | • | SCREEN - B | ncoated
B3 or GG3. Whe | hen green the | | Pin | Electrode | | | . a c | creen shall be
ctivated zinc s
9. VCR518 | | | 1
2
3 | k
g
h | | | RATI | NG | | Note | 2
3
4
5
6
7 | n
h
-
a2 | | | Heater Voltage Heater Current Max. Third Anode Volta Max. Grid Voltage x plate sensitivity Each y plate sensitivit TYPICAL OPERATING CONDI Second Anode Voltage Third Anode Voltage | A | | | | | | | Hood (a4) Anode Voltage
Modulator Voltage
Cathode Current
Beam Current | e (kV)
(V)
(μA)
(μA) | 1 • 23
14
135
15 | В | See d | rawing on page 4. | ## NOTES - A. The tube shall be of three anode construction with the first anode connected internally to the third anode. - B. The hood a4 is an internal electrostatic shield around the deflecting system. - C. Viewing the screen of the tube with the key on the base downwards, a positive potential applied to Pin x1 shall deflect both spots to the left, a positive potential applied to Pin y1 shall deflect one spot upwards, and a positive potential applied to Pin y2 shall deflect the other spot downwards. CV1518 To be performed in addition to those applicable in K.1001 | | T | est C | onditions | - | Test | Lin
Min. | mits
Max. | No.
Tested | Note | |-------------|---------------------------------------|--|---|--|---|--------------------|---------------------|----------------|------| | | VO | ltage | s applied | to the x | 4 shall be connected to -plates shall be applied sured in the a4 lead. | a3, and a | my defle | ction
The | | | | Vh | Va3
(kV) | Va2 | ٧g | | | | | | | a | 4 | 0 | 0 | 0 | Ih (A) | 1 | 1.25 | 5%(1) | | | b | 4 | 1.2 | - | To give
Ib=10µA | Va2 (V) | 200 | 400 | %(1) | · | | c | 4 | 1.2 | <u>-</u> | Varied
from
zero
to value
for
cut off | Variation in value of
Va2 for optimum focus
over the stated range
of Vg (V) | - | 20 | 10% | | | a | 4 | 1.2 | Adjust
for
optimum
focus | Adjust
to give
cut off
of both
beams | -v _g (v) | dish | 35 | 100% | | | е | 4 | 1.2 | ditto | Adjust
to give
cut off
of each
beam in
turn | Difference in value of
Vg for cut off of
each beam (V) | <u>-</u> | 4 | 100% | | | f | Ad;
lig
car | just V
ght ov | ditto /g to give itput of . s on a clo | 004 | -vg (v) | 3 | 30 | 100% | | | g | DEF
way
non
30
din
the | 1.2
TECT
Te time. and
mm. :
rections
a line | ditto ION with a me base of a line ler in the x a cons successe width to at the cotrace. | 10 kc/s
ngth of
and y
ssively, | (1) Line width shall
not be greater than
that of a standard
tube over the useful
screen area. | | | 100% | | | h | See | | ditto
001/5A.3.2
r = 1 Mego | | GRID INSULATION Leakage current (µA) Increase in voltmeter reading | - | 30
100% | 100%
100% | | | j | 4 | 1.2 | ditto | Any
conven-
ient
value | DEFLECTION
SENSITIVITIES | 500/Va3
310/Va3 | 61 6/Va3
430/Va3 | 5%(1)
5%(1) | | | | Test Confilhions | | | | T. See See See See See See See See See Se | i i i i i i i i i i i i i i i i i i i | | Maria
Tarah | Type - ** in a | |----------|---------------------------------------|---|---|--|--|---------------------------------------|----------------------|-----------------------|---| | | ei- | ten in | (37.1) - 1 (4.1) (6.7) (3 | ă. | | a things of | Mes. | 1 Phys 1 17 | | | ere vegy | 1000 P | nagognacion desc
N.B. L. 171 | grade a mandre de la companione de la compa | garantario establismo | And the second s | and the section | e e company | | | | 1 | V m | | 1 4 A | \$ 55 to | - | | | | | | i nest | · · · · · · · · · · · · · · · · · · · | | Section 1997 | (1) * | | | | | | | . (| 44. | | 10 PM | | | \$ 1.
1. 2. | | * 1 | | | Ì | | | in frank
Handarijan | | | | | | | | : | | | n en
North gas | | | | | | | | | Def J | | ne rijaeli. | | | | | | | | | 1.5 | | at the first | | | | | | | | | | | | * . | | | | | | | , | | | 434 1000 | tid in the second | | | | | | | | | | | and the second s | ė
S | | | | ing a second | | | | | | SK JANG | e
Januar (1784) | part of properties | a ce commentar con es | | the state of s | | | | | | 75 | * * { | | | in mary | | | | | | | | 4 | | era julija | | | | | | | | | (2) | | an imb | | 27.5 | | | a a | | | | r | | | e. | | 5 | i
Linear services | . v _a 1 •. | | | | | | | | A toller of the same | | | | ne de la companya | | n. | | 1.2 | ditto | ditto | ORIENTATION OF AXES | | | | | | | 1 * ' | 1 | | | OF DEFLECTION | | | | | | | | | | 7 4 4 | i | | | | | | | | | sured re | | 1 | 1_ | +200 | 4.004 | | | | to | xis C | sured re | | y axis | - | ±20° | 100% | | | | to dra | ixis C | -0' shew | n in | y axis | - | ±20° | 100% | | | | to dra | ixis C | | n in | y axis | _ | ±20° | 100% | | | <u> </u> | to a | ving. | ditto | ditto | y exis (1) Deflection of y | - | ±20° | 100% | | |
o | to a | ving. 1.2 Saw t | ditto | ditto lection ied to | (1) Deflection of yt trace as a per- | - | | | | | • | to a | ving. 1.2 Saw t volta | ditto cooth defi uges appl | ditto lection ied to o y2 | (1) Deflection of yt
trace as a per-
centage of | - | ±20° | 100% | | | <u> </u> | to a | 1.2
Saw t
volta
plate | ditto
ditto
coth defi
ages appl
ate and t | ditto lection ied to o y2 | (1) Deflection of yt
trace as a per-
centage of
maximum y2 | - | | | | |
o | to area | 1.2
Saw t
volta
x pla
plate | ditto coth defi ges appl te and t y plat d to a3. | ditto lection ied to o y2 | (1) Deflection of yt
trace as a per-
centage of
maximum y2
displacement | - | | | | | o | to area | 1.2
Saw t
volta
plate
joine
Saw t | ditto coth defi ges appl tte and t typi plat ad to a3. | ditto lection ied to o y2 e | (1) Deflection of yt trace as a percentage of maximum y2 displacement (2) Deflection of y2 | - | | | | | 0 | to area | ving. 1.2 Saw t volta x plate joine Saw t volta | ditto coth defi ges appl te and t y plat d to a3. | ditto lection ied to o y2 e lection ied to | (1) Deflection of yt trace as a percentage of maximum y2 displacement (2) Deflection of y2 trace as a percentage of | - | 2% | 100% | | | o | to area | 1.2 Saw t volta x plate joine x plate plate y plate y plate y plate x plate x plate x plate x plate x plate y plate | ditto coth defiges appl te and t y plat d to a3. coth def | ditto lection ied to o y2 e lection ied to o y1 te | (1) Deflection of yt trace as a percentage of maximum y2 displacement (2) Deflection of y2 trace as a per- | - | | | |