MINISTRY OF SUPPLY - D.L.R.D. (A)/R.A.E.

VALVE ELECTRONIC

CV1528

Specification MOSA/CV.1528	SECURITY			
Issue 4 Dated 12.6.53.	Specification	Valve		
To be read in conjunction with K.1001.	UNCLASSIFIED	UNCLASSIFIED		

Indicates a change

TYPE OF VALVE - Cathode Ray Tu TYPE OF DEFLECTION - Suitable for e or magnetic de BULB - Internally coa conductive coa SCREEN - OCM.52 PROTOTYPE - VCR.528	MARKING See K.1001/4				
RATING		Note	12	BASE contact key base CONNECTIONS	
			<u>Pin</u>	Electrode	
Heater Voltage Heater Current Max. Final Anode Voltage KV Max. First Anode Voltage KV X-plate sensitivity Y-plate sensitivity Mm/V Desirable spot size Mm/V TYPICAL OPERATING CONDITIONS Final Anode Voltage Second Anode Voltage First Anode Voltage Beam Current KV Beam Current	4 1 7 2 1345/Va3 1300/Va3 0.25 6 1.6 1.8 20	A	1 2 3 4 5 6 7 8 9 10 11 12	Cathode Grid Heater Heater A1 A2 Internal conductive coating Y2 X2 A3 X1 Y1	
,,			DIMENSIONS See Drawing on page 4		

NOTE

A. The tube is not suitable for use with a repeating line trace except at very low beam current, owing to extreme liability to screen burning.

TESTS

CV1528

To be performed in addition to those applicable in K.1001

	Test Conditions See K.1001/5A.13					Marsh.	Lin	its	No. Tested	Note
						Test	Min.	Max.		
8.						CAPACITANCES. (pF) 1. Each X or Y- plate to all other electrodes. 2. Grid to all other electrodes. 3. One X to one Y-plate.	-	20 25 10	%(10) %(10) %(10)	
	٧'n	Va3 (kV)	Va2 (kV)	Va1 (kV)	Vg					
ъ	4	0	0	0	0	Ih (A)	0,8	1.3	100%	
٥	4	6	Adjusted for op- timem focus	1,8	Adjust to give out-off	Vg (V) Value to be noted.	-	-100	100%	
đ	put		ditto ed to give 025 cande			(1) Vg (V) (2) Change in value of Vg from test (c) (V)	-3 -	-	100%	
•	tim lin and the at GRI pos to "d. pul bei	LECTION LECTIO	ditto M. With a of 10 kc, th of 210 ections so width will ntre of th e grid wil lue obtain e nominal ation and usecs and ely.	s nom. mm in nocessi be me trac l be p plitude ned in values recurr	and a the X vely, asured e. ulsed equal test of ence	(1) Line width (mm)	800	0.8 1800	100%	
£	4 6 Any convenient value See K.1001/5A.3.2. Resistor = 10 MΩ			GRID INSULATION 1. Leakage current (uA) 2. Increase in voltmeter reading	<u>-</u>	100%	100% 100%			
g	4	6	Adjusted for op- timm focus	1.8	Any con venient value	DEFLECTION SENSITIVITIES 1. X-plate (mm/V) 2. Y-plate (mm/V)	1090 Va3 1000 Va3	1660 Va3 1600 Va3	100%	

Test Conditions						Test	Limits		No.	Note
						1950	Kin.	Max.	Tested	Note
	۷ħ	Va3 (kV)	Va2 (kV)	Vai (kV)	٧g					
h	4	6	Adjusted for op- timm focus	1.8	Any con- venient value	Deviation of spot from centre of screen (mma)	-	25	100%	
j	4 6 ditto 1.8 ditto Deflections to cover stated rec- tangle centred in the centre of the screen with the longer axis in the X direction.					Useful Soreen Area Rectangle (mm)	210 X 100		100%	
k	4 6 Any con- venient value Angle measured relative to axis OO' on drawing on page 4.				o axis	Orientation of Y axis of deflection	-	<u>+</u> 10°	100%	
•	4	6	ditto	1.8	ditto	Angle between X and Y-axis	88°	920	5%(10)	
n	Test to be made using Test Set Type 331.					Afterglow (seconds)	10	20	10%	

S)

NOTES

- I. THE INTERNAL CONDUCTIVE COATING SHALL BE OF SUCH DIMENSIONS THAT IT FUNCTIONS EFFECTIVELY BUT DOES NOT OBSCURE THE REQUIRED USEFUL SCREEN AREA.
- 2. WHEN VIEWING THE SCREEN WITH THE TUBE POSITIONED SO THAT THE BASE SPIGOT IS UPPERMOST, A POSITIVE VOLTAGE APPLIED TO THE TERMINAL XI SHALL DEFLECT THE SPOT TO THE RIGHT AND A POSITIVE VOLTAGE APPLIED TO THE TERMINAL Y SHALL DEFLECT THE SPOT DOWNWARDS.

235 DIA SCREEN <u>∴</u>© **63 MAX.** 50 MIN. €80_€ Ζ̈́ 288

ALL DIMENSIONS IN MILLIMETRES.

73 MAX. NECK DIA. 60 MIN. OVER THIS LENGTH.