Specification MOSA/CV1589/CV1590	SECURITY			
Issue 6 Dated 1.11.54 To be read in conjunction with B.S.448,B.S.1409 & K1001	Specification UNCLASSIFIED	Valve UNCLASSIFIED		

..... Indicates a change

TYPE OF VALVE - Cathode Ray Tube TYPE OF DEFLECTION - Electrostatic. Sui symmetrical deflection is symmetrical deflection. BULB - Internally coated conductive coating. SCREEN - CV1589 - GGM27 or CV1590 - GGM26 or	<u>MARKING</u> See K1001/4 <u>BASE</u> B.S.448/B12D			
PROTOTYPES - CV1589 - VCR511A CV1590 - VCR511B	CONNECTIONS			
RATING Heater Voltage (V) Heater Current (A) Max. Final Anode Voltage (KV) r-plate Sensitivity (mm/V)	No te	Pin 1 2 3 4 5 6 7 8 9	Electrode k g h N.C a2	
Final Anode Voltage (V) Second Anode Voltage (V) Beam Current (µA)	1000/Va3 1000/Va3 4.0 800 20		10 11 12	N.C. #2 x2 a3 x1 y1 DIMENSIONS Drawing on Page 3

NOTES

- A. A magnetic shield shall be supplied fitted to the valve and be such as to provide adequate screening from internal magnetic field.
- B. When viewing the screen with the valve positioned such that the base spigot is uppermost, a positive voltage applied to the terminal xl shall deflect the spot to the right, and a positive voltage applied to the terminal yl shall deflect the spot downwards.

ر	VI	59	To be per	formed in	TESTS addition to those applicable	le in Kl	.001	Pa	ge 2
	Test Conditions				Test		Limits		Nos
	٧h	(kv)	Va2	٧g			Min.	Max.	Teste
2			1001/54.13		INTER_ELECTRODE CAPACITANCES (pf) 1. Each r or plate to all other electrodes 2. Grid to all other electrodes	1	-	20 20	5% (10)
b	4.0	0	0	0	3. One x to one y plate Ih	(A)	0.75	5 1.2	100%
0	4.0 Adju	4.0 st Vg	Adjust for optimum focus to give a li	Adjust ght	-¥g	(V)	1	-	100%
			.Ol candelas aster.	on	· ·				
đ.	4.0	4.0	ditto	Adjust to	(1) -Vg (2) Change in value of	(A)	23	60 25	100% 100%
•	time	base line	ditto With a sir of 10 kc/s (length of 2 00 mm in the	Nominal) 00 mm in	Vg from test (c) (1) Line width	(mm)	<u>-</u>	0.8	100%
	position of to value recur	The partial of partial	grid will be from cut-of equal to the (2), the nomi ulse duratio being 100 µ s respective	pulsed f with value nal n and secs	(2) Va2	(V)	600	1200	100%
f	4•0 Re	Klo	Any convenient value mended Metholol/5A.3.2.	_	GRID INSULATION 1. Leakage Current 2. Increase in voltmeter reading	(µA)		6.0 100%	100%
g	4.0	4.0	Adjust for optimum focus	Any con- venient value	DEFLECTION SENSITIVITIES 1. x- plate 2. y- plate	(v\/mm)	750/ Va3 750/ Va3	1250/ Va3 1250/ Va3	10% (10) 10% (10)
_									

									_
Test Conditions		ns	Test	Limits		No.			
					Min.	Max.	Tested		
	Vh	Va3 (kV)	V a2	٧g					
1	4.0 Defl		Adjust for optimum focus s measured e of scree		USEFUL SCREEN AREA 1. # deflection (nm) 2. # deflection (nm)	<u>+1</u> 05 <u>+</u> 50	-	100 %	.1
k	4.0	4.0	ditto	ditto	1. Orientation of x axis of deflection relative to OO' on drawing.	80°	1000	100%	
					2. Angle between r and yexes of deflection	85°	95°	100%	
1				-	The screen shall not be worse for graininess and non- uniformity than a standard tube or pattern.			100%	←
m	m Test to be carried out in Test Set 331				Afterglow (sees)	15	-	10%	4

