ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION CV2284, ISSUE 2 DATED 24.7.58

AMENDMENT NO. 1

Page A, Connections & Dimensions:

Amend last line to read:- "Notes JJ, KK, apply".

Page B, ADD new note KK.

The external diameter of the cylinder which is integral with the output section shall be within the limits 1.790" - 1.835" for 0.6" behind the output flange, i.e. to a plane parallel to the front face of the output flange and 0.85" away. The actual diameter shall have a parallel tolerance of $\pm .005"$.

October, 1959 N. 6157 R. R. E.

Specification CV2284	Security			
Issue 2, Dated 24, 7, 58. To be read in conjunction with K1006 and with HIL-E-1/979C dated 18th June, 1957.	Smedification Valve Unclassified Unclassified			
Type of Valves Pulse Higherren Pixed Frequency Pretetype 4J50A.	MARKING See K1001/4 Additional markings:- Serial No			
RATING RATING as en Page 1 of HIL-E-1/979C with additions as in notes AA, EB,	Cornection As on pages 5	ons & Dimensions		
TESTS TESTS as en pages 2, 3 of MIL-E-1/979C with additions as in metes EE - MH.	HIL-E-1/979C. Hote J.J. applies			

HOTES

- A.A. A duty cycle of .001 may be exceeded provided that Pi does not exceed 635 watts and that ib lies between 15 cmps and the stated MAXimum limits,
- B.B. Output Coupling: Add: Magnetron couples to choke flange 2830033. Details of this and related items are given in RCL 351, 352, which may be obtained from Redic Components Standardisation Committee, 77-91 New Oxford Street, Lendon W.C.1.
- C.C. Cepies of "Inspection Instructions for Electron Tubes" (ASESA) as called up in MIL-E-1 can be obtained from the Secretary, T.L.5(b), The Ministry of Supply, Castlewood House, 77-91, New Oxford Street, Lendon W.C.1.
- D.D. Qualification Approval (a) Read as "Required for CV markings"
 - (b) Carton Drop: Add "to meet the requirements of K1005",
- E.E. The fellowing shall refer to r.r.v. fer Osc 1 and 2

The rate of Rise of voltage of the test medulator shall be determined by the method given below.

The value obtained for the Rate of Rise of Veltage must not be less than the value specified. A modulator will be accepted as having suitable characteristics in respect of rate of Rise of Veltage if the instantaneous value of the rate of rise of veltage measured with the modulator adjusted to give the specified operating conditions with the magnetron under test and with the magnetron then replaced by a capacitor of value equal to the nominal capacitance of the magnetron where specified and otherwise equal to the average value for the type of magnetron.

CV2284/2/1

E.E. submitted, the measurement being made ever the interval between the point where the Comt'd voltage first equals 80% and the point where the voltage first equals 100g of the Pulse Voltage of the magnetren under test, measured under the conditions obtaining during the test, does not fall after the maximum in this interval to less than 95% of its maximum value nor has a value less than 90% of its maximum at any point in the interval

Heasurement of Rate of Rise of Veltage. The Rate of Rise of Veltage is defined as the maximum instantaneous value of the rate of rise of voltage measured scress the magnetron under test after the veltage first exceeds 80% of the Palse Veltage of the magnetron under test measured under the conditions specified for the test,

- P.F. He technical infernation shall appear on the valve or its packing.
- G.G. For Type Approval few valves shall be made available and the manufacturer shall earry out the following test after a holding period of 168 hrs (Min). The stability shall be measured as in note 5, and recorded. The spectrum width, expressed as a multiple of 1, and the minor lobe height shall also be measured, notes 3 and 4 also supply.

Parameter	Symbol .	<u>Units</u>	Value
Initial anode temperature	-	e c	-50°C MAX.
Heater warm up time	tk.	2005	180 HAI.
Initial heater veltage	er	Volts	13.0 MAX.
Heater supply frequency	F	cps	1000 ± 10%
Pulse width	tp	22 4	1 ± 0.1
Pulse current	1b) Mills Amps	15 MAX.
Duty Cyele	Du	•	.002 MIN.
Heater run voltage	Ef	Volts	13.30125 Pi
			for P1 < 595 watts,
			25.30293 P1
			fer P1 >595 watts
Y.S.W.R. of load	•	ratio	1.5 MIN.
Phase of refl coeff	•	•	A13.
Instantaneous rate of rise of		•	_
pulse voltage dv at enset of	r,r,v,	_{jes} /hg	60 MAX.
R/F escillations.	•	•	•

In addition the manufacturer shall earry out all tests, including EH and H tests on the same valves, and shall submit to the approving authority a detument containing the detailed results of these tests. The approving authority Shall be combled to repeat any of these tests, using the same valves either at the manufacturers test rig, or at any other as required by the approving authority.

In addition at least one valve shall have been life tested, and a copy of the records shall be included in the foregoing document.

- H.H. Delete mote 9.
- J.J. The diameter of the undimensioned collar on the cathode terminal shall not exceed 1.375 inches. (This can be found on the central projection and on the two left hand sorap views of the terminal and assemblies),

CV2264/2/B.

MIL-E-1/979C 18 June 1957 SUPERSEDING MIL-E-1/979B 26 December 1956

INDIVIDUAL MILITARY SPECIFICATION SHEET ELECTRON TUBE, MAGNETRON, PULSE

JAN-4J50A

This specification sheet forms a part of the latest issue of Military Specification MIL-E-1.

Description: Magnetron, Pulse, 9375 Mc Nominal Fixed Frequency, 225kw Nominal Peak Power Output, Permanent Magnet, Air Cooled

thealuta	Ratings:	(Nota	۸١
ADSOLUTE	MALIN PRI	INOTE	A I

Parameter: Units:	E f V	If A	tk sec.	VSWR	rrv kv/us	Alt. mm of Hg	Anode T	Cathode T	Du
Maximum:	15	15		1.5	160	_	150	165	.001
Minimum:	_	_	180		60	600			
Notes:	D	(Surge)					E	E	

Design Ratings: (Notes B & C) .

					rrv e tp-	rrv ⊕ tp-	rrv @ tp=	Pressui	<u>rization</u>
Parameter:	Ef	ib	Ρi	tp	0.5 us	1.75 us	5.0 us	Input	Output
Units:	Vac	a	W	us	kv/us	kv/us	kv/us	PSIA	PSIA
Maximum:	Note D	27.5	750	6 .0	160	140	110	45	45
Linimum:	Note D		_	_	120	9 5	70		
Notes:		F			С	С	C		G

Output Coupling: Magnetron couples to a UG-52A/U choke flange.

Note A: These ratings can not be used similtineously and no individual rating should be exceeded. The requirements of MIL-E-1, paragraph 6.5 apply.

Note B: To relate the various parameters employ the following formula:

Pi= ib x Du x 21.5kv

Note C: The rate of rise of voltage (rrv) shall be expressed in kilovolts per microsecond defined by the steepest tangent to the leading edge of the voltage pulse above 80 percent amplitude. Any capacitance used in viewing system shall not exceed 6.0 uufd.

Note D: Prior to the application of high voltage, the cathode shall be heated to the required initial operating temperature. This may be done by applying 13.75 volts for three minutes. On standby, the heater voltage shall not exceed 13.75 volts. On the application of anode power, the heater voltage should be lowered to the voltage specified, and for various power inputs, up to 595 watts, it should be adjusted approximately (within 5 percent) according to the following formula:

Ef = 14 - 0.0125 Pi

For inputs above 595 watts, the following formula shall be used:

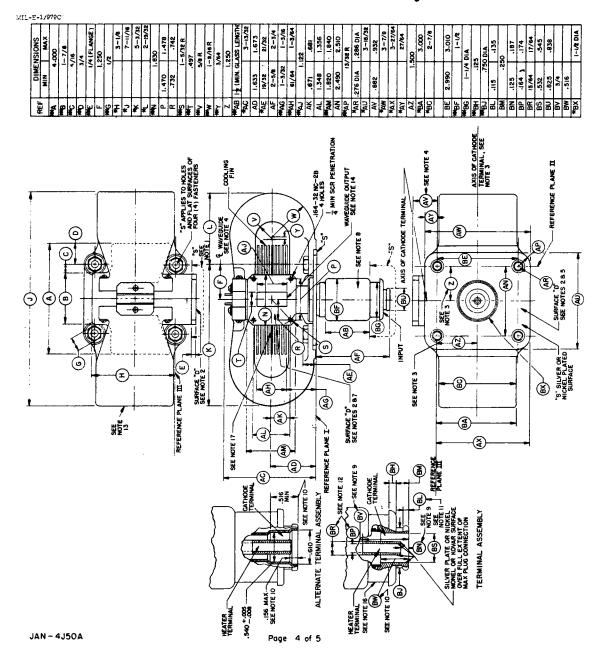
Ef=24 - 0.0293 Pi

The tube heater shall be protected against arcing by the use of a connector that places a minimum capacitance of 4000 uufd across the heater directly at the input terminals.

Note E: To be measured at the point specified on the Outline Drawing.

Note F: For pulse widths above 1.2 us, the maximum design pulse current shall be reduced in accordance with the following formula:

ib= 29.6 - 1.934 tp


Note G: To prevent waveguide breakdown, pressurization is required.

JAN-4J50A

Fage 1 of 5

D- 4	a	A				
Ref.	<u>Test</u>	Conditions		Min.	Max.	•
3.1	Qualification	Required for JAN Marking				
4.5	Holding Period:	t= 168 hours				
4.9.2	Dimensions:	Per Outline Drawing				
4.9.8	Salt Spray Corrosion:	Omit				
4.9.18	Container Drop:	(i) Package Group 9; Container Size D				
9.19.1	*Vibration:	No Voltages				
4.9.19.2	**Vibration:	No Voltages				
	**Phase of Sink:	F=9375Mc, Note 8	Dist:	.25	.40	₹
4.9.13	Pressurizing:	40 to 45 psia; input and output assemblies				
4.10.8	Heater Current:	Ef= 13.75 Vac; tk= 180 (Min.)	If:	3.0	3.5	A
4.16.3	Oscillation (1):	Notes 1, 2, and D				
4.16.3.2	Heater:	Ef=13.75 Vac for tk=180 (Max.); Ef=6.6 Vac for test				
16.3.3	Pulse Characteristics:	tp=0.5½ 0.05 us; Du=0.001; rrv=160 kv/us (min.)				
16.3.4	Average Anode Current:	Tb=27.5 mAdc				
16.3.5	Pulse Voltage:		epy:	20.0	23.0	kv
16.3.6	Power Output:		Po:	225		W
10.7.3	Frequency:	Temp. of anode block approx. 100°C	F:	9345	9405	Мс
16.5	Pulling Factor:		∆ F:		15	Мс
16.3.7	Spectrum Measurements:	Notes 3, 4, and D Ib= 18, 23 and 27.5 mAde				
٠.	Minor Lobes R. F. Bandwidth		Ratio: \$\Delta\$ F:	6	2.5/tp	db Mc
	Stability:	Notes 3 and 5	M.P.:	_	1.0	*
9.14	**Temperature Coefficient:	Anode temp = 70°C to 100°C at reference point	∆ F/ △ T:	_	0.25	Mc/°
.16.1	**Air Cooling:	Note 6	ΔT:		50	°c
9.12	**Low Pressure Operation:	Pressure=600 mm Hg absolute (max.)				
.16.3	Oscillation (2):	Notes 1, 2, and D				
16.3.2	Heater:	Ef=13.75 Vac for tk=180 (Max); Ef=9.2 Vac for test				
JAN-4J50A		Page 2 of 5				

Ref.	Test		Conditions		Min.	lax.
4.16.3.3	Pulse character	ristics:	tp=5.5 £ 0.5 us; Du= .001; rrv= 110 kv/us(n			
4.16.3.4	Average Anode (Durrent:	Ib= 18 mAdc			
4.16.3.6.1	*Power Output:				Po: 140	W
4.16.3.7	*R. F. Bandwidt	h:			Δ F: —	1.0 Mc
	∜Stability:		Notes 3, 5 and 7		M.P.: —	1.0 %
4.9.15	**Low Temperatu Operation:	ire	tk= 180 (max.)			
4.11	Life Test:		Oscillation (1); VSWR = 1.5:1 (micycled through A 30 minutes max.	n.)	Life: 682 -	- Cycles
	One cycle shall	consist of	the following:			
	Condition Standby Osc. (1) Off	<u>Tb</u> 0 27.5 mAdc 0	Ef 13.75 Vac 6.6 Vac 0	Duration 3 minutes 22 minutes 5 minutes minimum		
4.11.4	Life Test End F	cints:	Oscillation (1) Power Output Frequency R. F. Bandwidth Stability Side Lobes		Po: 170 - F: 9345 94 Δ F: - 3.0 M.P.: - 2. Ratio: 6.0 -	05 Mc /tp Mc 0 %
Note 1:				per pulse delivered al energy per pulse.		if arc-
Note 2:				g this test shall be e specifically noted		line
Note 3:			into a transmiss: m spectrum degrada	ion line with a VSWR ation.	of 1.5:1 adj	ısted
Note 4:		not change	sign more than one	ich the major lobe h ce for power levels		
Note 5:	expressed as a observation. The missing if the the frequency rethat phase products as a second control of the c	per cent of he missing) e NF energy ange of 9330 ucing maxim	the number of inpulses (M.P.), due is less than 70 pt to 9425Mc. The um instability and	average number of o out pulses applied d s to any causes, are percent of the norma VSwR of Note 3 shal i the missing pulses en minute test perio	uring the per considered to l energy leven l be adjusted counted during	iod of be lin to
Note 6:	cooling fins fr	om an orifi	ce of 4-1/4 by 1-3	mm of mercury will by $1/4$ inches. The tem α specified on the o	perature rise	shall
Note 7:	This test shall	be the firs	st one performed a	after the specified	holding period	i.
Note 8:		the first		hase of sink as meas the load, shall be w		its
Note 9:	Referenced spectation for bids		all be of the is	sue in effect on the	date of invi	-
	•		Page 3 of 5		JAN-	4 J50A

NOTES:

- ** 1. ALL METAL SURFACES COVERED BY BLACK FINISH EXCEPT THOSE MARKED "S" & "D". ("S" SHALL BE SILVER OR NICKEL PLATED SURFACES)
 - 2. HERMETIC CONNECTIONS CAN BE MADE TO SURFACE "D".
 - 3. THE AXIS OF THE CATHODE TERMINAL SHALL BE WITHIN A RADIUS OF 3/64 OF THE SPECIFIED LOCATION. (NOTE 4 APPLIES)
 - 4. THE LIMITS INCLUDE ANGULAR AS WELL AS LATERAL DEVIATIONS.
- * 5. ALL POINTS ON THE MOUNTING SURFACE SHALL BE WITHIN .005 OF REFERENCE PLANE I.
- ** 6. DIMENSIONS WITHOUT LIMITS ARE FOR EQUIPMENT DESIGN AND QUALIFICATION APPROVAL ONLY AND NEED NOT BE CHECKED.
- * 7. WITH THE FLANGE ON A PLANE SURFACE, A .005 THICKNESS GAUGE 1/8 WIDE SHALL NOT ENTER.
 - 8. ANY PORTION OF THE ASSEMBLY EXTENDING BELOW REFERENCE PLANE I SHALL BE WITHIN A 3/4 RADIUS OF THE SPECIFIED AXIS OF THE INPUT.
 - 9. THESE DIMENSIONS DEFINE THE EXTREMITIES OF THE CYLINDRICAL SECTION GIVEN BY THE "BP" DIMENSION.
 - 10. THESE DIMENSIONS DEFINE THE EXTREMITIES OF THE CYLINDRICAL SECTION GIVEN BY THE "BS" DIMENSION.
- **11. NO CLAMPING MEANS TO BEAR BEYOND THIS DIMENSION.
 - 12. THE HEATER TERMINAL SHALL BE CONCENTRIC WITH THE CATHODE TERMINAL WITHIN .010.
 - 13. WARNING MAINTAIN MINIMUM CLEARANCE 2 INCHES BETWEEN THIS MAGNET AND HAGNETIC MATERIAL (MAGNETS, STEEL TOOLS, PLATES, ETC).
- **14. THE OPENING IN THE WAVEGUIDE SHALL BE ENCLOSED BY A DUST COVER WHEN TUBE IS NOT IN USE.
 - 15. MEANS OTHER THAN SOFT SOLDER SHALL BE USED FOR RECHANICAL STRENGTH.
 - 16. THE INCLUSION OF A CYLINDRICAL RIB 1/8 WIDE, 1.312/.015 DIAMETER WITH CENTER LOCATED 9/32 FROM THE BOTTOM EDGE OF THE FLANGE MAY BE USED AS AN ALTERNATE DESIGN.
 - 17. TEMPERATURE RISE TEST POINT. THIS POINT IS ON THE ANODE BLOCK IN FRONT OF COOLING FINS.