Specification MOS/CV2346	SECURITY	
Issue 3 Dated 1.3.57. To be read in conjunction with K1006, except where	<u>Specification</u> <u>Valve</u>	
otherwise stated.	UNCLASS IF IED UNCLASS IF IED	

	TYPE OF VALVE - Velocity Moderate with external CATHODE - Indirectly he	MARKING See K1001/4								
	FROTOTYPE - VX 5028 RATING							BASE B7G See BS.448 : B7G/1.1.		
			Absolute Maximum	Normal	Minimum	Note		CONNECTIONS		
7777 7		Ef (V) If (A) Ers (V) Prs (W) Er (V) Po (MW) F (ktic/s) Rr (Megohm) AF (hic/s)	75 11.5 0.25	6.3 0.65 300 9 -100 to -300 50 8.0-10.0	5.7 50 30 4.0	A,B,D A,D B,C E F G E	3 4 5 6 7 TC Discs	Internally connected Cathode Internally connected Internally connected Internally connected Heater Cathode Screen (Note H) Heater Reflector Resonator TOP CAP CT1 DEE S.448: 6/1.1. DIMENSIONS DE Drawing on Page 5		
							MOUNTING POSITION Any			

Z.14206.R.

CV2346/3/A

NOTES

- A. For maximum life operating conditions $E_{rs} = 300V$, $Ef = 5.8 \pm 0.1V$ are recommended. $E_{rs} = 350V$ will usually give increased power output with about 25% reduction in average life.
- B. The voltages quoted in this Specification are relative to cathode. The valve is normally operated with resonator at earth potential. One side of the heater should preferably be connected to cathode.
- C. For the band 8.5-10.0 kHc/s the 42 cycle reflector mode is used. In this band the reflector voltage is given by the formula

Er = SF = 335 volts.

where F = frequency (kHc/s) and the constant S has a mean value of 55.5. The reflector voltage adjustment should allow for \pm 30V variation from valve to valve. See page 6 for typical reflector characteristics.

- D. The temperature of the valve envelope should not at any point exceed 200°C, nor should that of the external metal parts at any point exceed 150°C. Forced air cooling may be needed if the valve is mounted in a confined space.
- E. With Ers = 300V and 4% cycle reflector mode in the band 8.5-10.0 kmc/s. The electronic tuning range ΔF is measured between the half power points of the mode, using a ¾λ radial-line resonator.
- F. The valve is designed to plug into an external resonator. The frequency coverage and other properties may be modified considerably by the resonator design. Frequencies of 3.0 to 12.0 kHc/s may be obtained, but tests are confined to the band 8.5 to 10.0 kHc/s. For details of the mechanical design and of the valve seating and contact arrangement see Page 5.
- G. If a high impedance reflector supply is used the circuit must include a diode to prevent Er becoming positive.
- H. The cathode screen (g1) should normally be connected to cathode. By applying a negative bias of 100-200V to this electrode it is usually possible to prevent oscillation, but factory tests do not guarantee this; there may be appreciable leakage resistance between this electrode and cathode.

CV2346/3/B

ELECTRON TUBE, KLYSTRON, SEPARATE CAVITY, TYPE CV2346

	cation sheet is to be read in conjunction	with Kico
--	---	-----------

								, •			
Ratings:		Ef	Ec1	Ec2/Ec3		Er		Pi	TE	Alt.	
		٧	Vdc	Vdc		Vdc		¥	œ	ft.	
Absolute max	imm	6.9	0	350		-500)	- 16	200	10,000	
		6.3	0	30 0		-100 to	-300	9			
Absolute min	imum	5•7	-200			-5 0					
Dimensions:	As per ou	tline.				Cathod	le:	Coated unipot	ential.		
Base:	B7G. See	BS фф	8:B7G/1.1.				- 1				
Pin No:	1	2	3	4	5	6	7	Lower disc	Upper disc	Cap	
Element:	int.con.	K	int.con.	int.con.	h		h	g2	g3	r	•
Test Conditi	ons - unless	other	wise specif	ied.							-
Ef	Egt	E	rs	Er		Tes	it Ca	vities	Load		
v.	٧		V	v			Note	1.	VSWR.		
6.3	0 1	3		just for max.					1.05 max.		
			i	n 4½ cycle m	de			1	W.G. No. 16		
Qualificatio	n Approval Te	sts.									
Ref.		Test		. ' <u>·</u>	ondi	tions		Minima	n Ma	ximm	
3.1	Qualificati	on App	roval					*			
K-1005	Carton Drop									•	
4.9.19.2	Vibration:			No volta	ges.						-
K-1001-10	Humidity:			No volta	_						-
	Oscillation	<u>(1)</u> :		Test car	Test cavity B.			Po:30			~
4-15-1	Power output	t;		Note 2					75	mW	€-
4-10-7-3-1	Frequency:					ffrequen	cy	OFS-	50	Mc/s	
				from the							
	Microphony:			Note 3.	-			ΔF:	0-5	Mc/s	
				modulati	on.			• ·· -	0.5	HC/S	
	Shock:					, duration		△ F: -	3	Mc/s	←-
						m. Freq-					
				uency ch Power ou				∆ Po: -	40		
4-15-6	Warm-up Time	:		Note 5.				tw: -	10; 90		
	·					of 20 mW			,,,,		
				min., an	d fre	equency					
					Mc/a	s of fina.	1				
4-15-5		# AA		value.		0					
401040	Temperature	Coelli	clent:	Temperat Differen		range 50°(;				
						ficient :	and	<u>d∓;</u> 0 d1	. = 0.0	08 Mc/°C	-
						ted for te		ų,			
				cavity a							
4.14.3.2.1								ratio:-	1		
4-11					0.1V Note 7 t:2000			- hrs.		-	
4-11-4	Life Test Er	M POIN	t:			age of va	ilue	Po:50	- %		€-
	Oscillation	(2)		at start	or t	.est•					
4.15.1	Upper Freque	ncy Li	mit:	In approx	red ^	avity at		Po: 1			
						5 Mic/s.	min-		- mM		
				Power Out				-			
											
									CV2	346/3/1	

CV2346

Ref.	<u>Test</u>	Conditions	Minimm	Mex i men
4-10-8	Heater Current:	and the second of the second	If : 600	700 ma ←
4.10.4.8	Resonator Current:	Er = -100V. Test		. ←
		Cavity A.	Irs: 22	35 mA
	Emission:	Er = -100V. Test		←
		Cavity A.		
		E varied from 5.8 to		•
		6.8V.	∆Irs: -	15 %
	Oscillation (2):	Test Cavity A		
4.15.1	Power Output:	Note 2	Po: 30	75 🖦 🗲
4.10.5.4	Reflector Voltage	Note 8	Record Er:-195	-255 V €
4.10.7.3.1	Frequency:	Difference of frequency	△ F: -	50 Mc/s.
		from that marked on	Record F -	- Mc/s.
	Electronic Tuning Rate:	test cavity. Er range: Note 9	AP.	
	Liectronic Tuning Rate:	Er Tange; Note 9	$\frac{dF}{dEr}$: 0.35	0.90 Mc/s/V ←
4.15.1	Power Output:	Er range: Note 9 Compared with max. Po	Po: 50:	- %
4-15-1	Oscillation Sink:	Er = value recorded above. Test cavity A modified to give QL = 600 max. Valve must start oscillating: power output. Note 10.	Po: 1	- 1964
4.15.1	Power Output Compared with	Vary Ers from 290-310V		
	<pre>value at Ers = 300V:</pre>		Po: 80	120 %
	Oscillation (3)	Test Cavity C		
4.15.1	Power Output:	Note 2	Po: 30	75 =W 🗲
4.10.5.4	Reflector Voltage Tracking;	Compare with value		
	Departure from	predicted from formula		
	Calculated Value:	in Note C, using values of Er and F obtained in Osc. (2) to determine value of parameter S.	ΔEr: ~	6 V 🗲
4-10-6-7-1	Total Reflector Current:	E	īr: -	4 HA
4-10-7-3-1	Frequency:	Difference of	ΔF: -	50 Mc/s.
451001000	- admind t	frequency from that		J,
		er adversal rraw and		

cv2346/3/2

Notes

The valve shall be tested in fixed-tuned ½ λ radial-line cavities having a fixed iris coupling into waveguide W.G. No. 16. The cavities shall be similar to the reference cavities supplied by the Approving Authority, which shall be used only for testing the performance of the test cavities. The nominal characteristics of the test cavities are:-

<u>Cavity</u>	Frequency, kic/s	Loaded Q. (QL)
A	10.1	850
В	9•35	670
C	8•5	670

The resonant frequency shall be clearly and indelibly marked on each test cavity and shall not differ by more than 100 Mc/s from the appropriate value above. The frequency shall be determined by measuring the frequency of oscillation of at least four valves in the test cavity and in the appropriate reference cavity; the frequency is defined as the value marked on the reference cavity plus or minus the average difference observed. The measurements shall be made after warming up of the valve and cavity to a frequency within 2 Mc/s of its steady value.

The loaded Q of each cavity shall not differ from that of the appropriate reference cavity by more than 5%. This is verified if the average minimum values of $\frac{dF}{dEr}$ for the sample valves in both test

and reference cavities do not differ by more than 3%.

2. Power output limits are defined for a test cavity with an unloaded Q of 2000. The actual limits used shall be corrected according to the formula

Revised power limit = nominal limit x
$$\frac{1}{QL} = \frac{1}{QU}$$

where QL = loaded Q value given in Note 1.

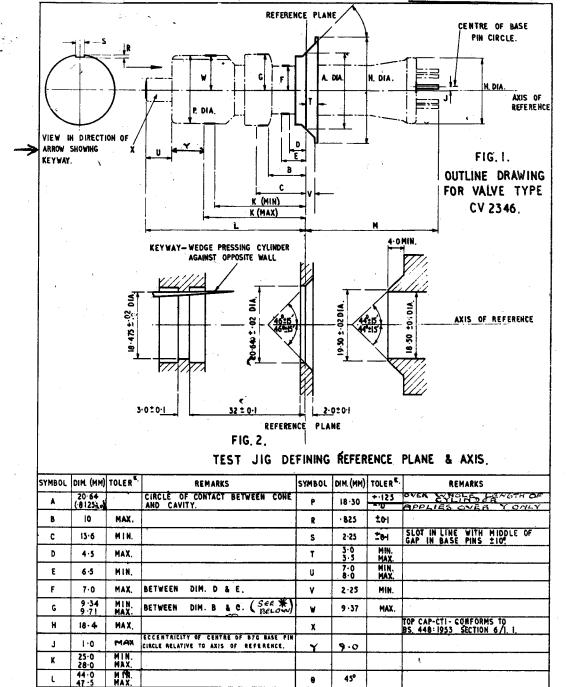
and QU = unloaded Q value for test cavity used.

The unloaded Q values for reference cavities will be given by the Approving Authority. The power limit correction factor for test cavities may be determined by measuring the power output of at least four values in both the test and an appropriate reference cavity. The average ratio of powers multiplied by the reference cavity correction factor gives the test cavity correction factor.

- 3. The valve shall be mounted close to the mouth of a moving coil loudspeaker on a 4 ft. square baffle. The loudspeaker shall be driven with 20 watts of noise having a substantially smooth spectrum from 50 to 5000 c/s.
- 4. The test shall be repeated with the shock directed along the major axis and in two mutually perpendicular directions normal to the major axis. Power output and frequency shall be measured before, during and after impact.

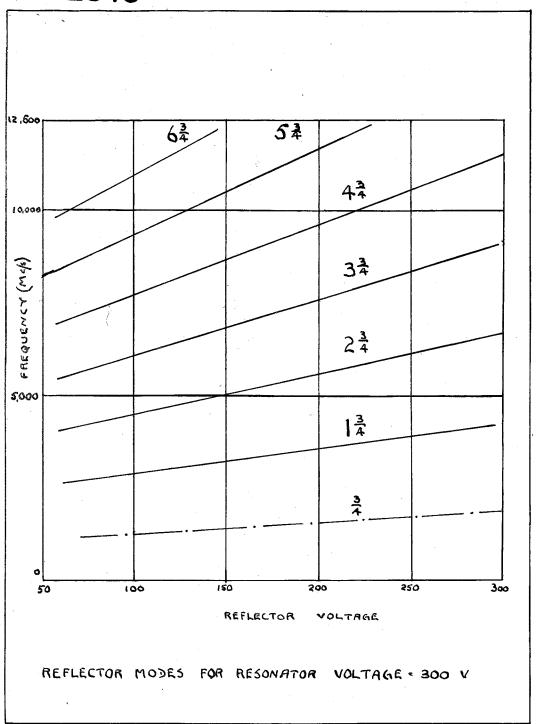
CV 2346/3/3

CV2346


- 5. The time shall be measured from the application of heater voltage. For the frequency measurement the resonator shall have been in use before the test for a period sufficient to reach thermal equilibrium.
- 6. The increase in noise temperature ratio due to oscillator noise shall be measured at an intermediate frequency of 45 Mc/s. using an image-matched mixer having a conversion loss of 6 db., operating with an input of 1 mW from the oscillator.
- 7. The valve to be inserted in a typical cavity in thermal connection with a heat sink and with free air circulation. A sample of at least six valves shall be tested; Qualification Approval may be granted providing the average of the lives is not less than 2000 hours.
- 8. The reflector voltage limits shall be adjusted at the rate of 1V per 18 Mc/s deviation of the oscillation frequency from 10.1 kMc/s.
- 9. Vary Er by ± 12V about the mean of values giving half maximum power. Test limits apply over the full range of ± 12V. Electronic tuning rate may be measured by dynamic means providing results agree with point-by-point measurements. The value of dF used in measuring dF shall not exceed 500 Ke/s.
- 10. A special test cavity may be used with modified coupling iris. Alternatively a stub may be inserted in the coupling section of a test cavity type A, within 3 cms. of the load side of the iris, with dimensions chosen to give the required QL. The value of QL may be checked as in Note 1; the average ratio of the values of dF obtained with at least four valves shall be not less than QL, where QL is 600

the value marked on the reference cavity.

cv2346/3/4


MIN. MAX.

28 7

* DEFINES RADIAL MOVEMENT REQUIRED OF CONTRET SPRINGS

CV.2346/3/5

CV.2346/3/6