Technical

CRT display using a standard TV monitor for 2650-based microcomputers

The CRT has become an important and almost indispensible part of many small computer systems. More often known as a visual display unit (VDU), it can be bought complete with a keyboard and all the necessary interface and control logic. However, a simple TV monitor can be used in place of specialized VDUs, providing the attractive facilities of

Display specification

A standard TV monitor is used to provide the display. It is driven by a video signal containing black-and-white character information and line and frame synchronization pulses. The screen is scanned in a 312 -line frame, not interlaced. Character exchange can be performed during the line flyback time or in blocks during the display time. Figure 1 shows the display frame and character format.
The character display is 22 rows of 40 characters per row. Each character is formed in a 7×5 matrix with five lines below the character to provide a space between rows. A character row thus consists of 12 lines. The display is normally white characters on a black background, although this can be reversed with a wire link.
The cursor can be positioned to any of the 880 character positions on the screen and is displayed by inverting the video signal for that character position. A reset input allows the screen to be erased and the cursor to be returned to the top left-hand position.

Abstract

a VDU at a fraction of the cost. Of course, a certain amount of control logic is required, as is a software program to control this. This Technical Note describes the hardware and software required to use a standard TV monitor as an I/O peripheral for a 2650 microcomputer system.

Display logic

The display logic is responsible for generating the video signal to the monitor according to the information supplied from the microcomputer via the data exchange interface. Figure 2 shows the block diagram of the display logic, with inputs from the data exchange and an output to the monitor.

Horizontal counter

The horizontal counter determines the position of each character along the line. Because video is displayed for only 46 of the 64μ s line-time, the counter should reach the value 40 (number of characters) in $46 \mu \mathrm{~s}$. Thus, after $64 \mu \mathrm{~s}$, the counter will reach the value 55 which will be decoded to produce the line-sync pulse via the flip-flop SYNFF. The rate at which the counter must be incremented (56 counts in $64 \mu \mathrm{~s}$) determines a system clock of 875 kHz .

Fig. 1 Display frame and character format on the CRT.

Fig. 2 Block diagram of the display logic.

Vertical timing

Line counter

The line counter is used to count the number of lines per character row. It is incremented each time the horizontal counter reaches its maximum value of 55 . The least significant three bits of the counter are used to control the vertical scan of the character generator (7-row matrix). It is reset after a count of 11 (12 lines).

Row counter

The row counter is incremented on each count of 11 of the line counter. The row counter is responsible for maintaining frame synchronization and character positioning.

Character memory

The screen capacity is $22 \times 40=880$ characters. This number of characters can conveniently be stored in a 1 k 8 RAM. The character memory is loaded with data from the data exchange or with the code for a space from the space logic.

Memory addressing

The character memory is addressed by either the exchange pointer or the screen pointer. The exchange pointer is used during data exchange between the microcomputer and the memory. This may occur when:

- the space flip-flop is set,
- the exchange-by-blocks flip-flop is set, or,
- the horizontal counter value is greater than or equal to 40 .

In all other cases, the memory is addressed by the screen pointer. The screen pointer starts at zero, corresponding to the top left-hand screen position, and is incremented at the same rate as the horizontal counter for the first 40 characters. At the end of each of the first 11 lines of a character row, the screen pointer is reloaded with the value in the address register (initially zero) to maintain the correct offset in the character memory for each row. At the end of the twelfth line of a row, the screen pointer has been incremented to the value of the address register +40 . This value is then stored in the address register to provide the offset for the next row of 40 characters. The screen pointer and address register are reset when the line counter is 311 and the horizontal counter is 55 .

Character generation

The output of the character memory is used to address a ROM character generator, Signetics type 2513 . This can be obtained with 64 standard ASCII characters on a 7×5 matrix. Only bits 0 to 5 of the memory output are used to address the character. The seven lines of the character are addressed by the three least significant bits of the line counter.

Each 5 -bit line of the 7×5 character matrix is parallel loaded into an eight-bit shift register, with the three remaining bits being set to zero. The three zero bits provide spacing between successive characters. The data in the shift register is then output serially using a 7 MHz clock (8 x the frequency of the system clock) which was determined by the horizontal character counter. This serial output is passed, via the display blanking circuit, to the video mixer before being output to the TV monitor.

Cursor control

The cursor indicates the screen position with which data exchange can occur. The cursor is displayed on the screen by inverting the video at that character position three times a second.
The output of the cursor is an approximate 3 Hz signal which alternately enables/disables the cursor position comparator. When the value of the screen pointer is equal to that of the exchange pointer and the comparator is enabled (for 16 frames every 32 frames) the shift register output is inverted for one character-time by the exclusive OR gate.

Display blanking

The data stream to the video mixer must be inhibited during:

- data exchange by blocks (ECBFF = 1),
- the five separation lines in each row (ROWSEP $=1$),
- the time that the horizontal counter value is $\geqslant 40$,
- the time that the row counter value is >22.

This function is achieved using a four-input NAND gate.
The complete display on the screen can be inverted by selection of a wire link to the final exclusive OR gate: the display is then black characters on a white background in place of white characters on a black background.

Display logic clocks

A stable clock is necessary if a clear display is required. Thus, the 7 MHz clock is derived from a phase-locked-loop which has a low-voltage reference from the 50 Hz mains supply. Division of this clock by eight provides the system clock, defined by the horizontal counter. Unless otherwise shown in the diagrams, all flip-flops, counters and registers are driven by this system clock.

Data exchange logic

This provides the interface between the microcomputer and the display logic. The block diagram of the data exchange is shown in Fig. 3. It is divided into three
subsections dealing with: data signals, display logic control and data transfer control. The circuit diagrams of these subsections are shown in Figs 4, 5 and 6.

Fig. 3 Block diagram of the data exchange logic.

Data signals

Figure 4 shows the connection of the microcomputer data bus to the character memory via an 8 T 31 bi-directional I/O port and 8T26 inverting transceivers. Bits 3 to 7 of the data bus are also used to transmit/receive signals for the display logic control subsection. During connection commands (ICX or OCX), the four most significant bits of the control word are passed to the command flip-flops in the display logic control. These bits are:

- ECB Exchange-by-blocks, bit 7; the character memory is continuously addressed when $\mathrm{ECB}=1$. When $\mathrm{ECB}=0$, the character memory is addressed during the flyback time.
- SPC Spaces, bit 6; fills the character memory with spaces and resets the cursor to the left-hand position. If SPC $=1$, it is only effective if $\mathrm{ECI}=1$.
- CURST Cursor reset, bit 5 ; the cursor is reset when CURST $=1$.
- ECI Exchange-by-interrupt, bit 4; data exchange is performed under interrupt control when $\mathrm{ECI}=1$. When $\mathrm{ECI}=0$, exchange is controlled by the main program.

During a status command, the state of four of the control flip-flops is transferred to the data bus.

Fig. 4 Circuit diagram of subsection A, data signals, of the data exchange logic.

Display logic control

Figure 5 shows the circuit of the control logic. At each connection command, the state of the ECB, SPC and ECI bits of the control word are stored until the following disconnection command. Flip-flops SYNFF1 and SYNFF2 are used to synchronize commands to the peripheral clock while CST1 and CST0 control the sequence of actions for data transfer.

Command decoding

The logic that performs the command and peripheral number decoding and contains the exchange pointer is shown on Fig. 6. The peripheral number decoder is shown here connected for peripheral number 4. The exchange pointer is a 10 -bit counter used to address the character memory. It can be set to any value by the microcomputer using the commands ADU and ADL.

The command and peripheral number are transferred to the peripheral via the eight least significant bits of the microprocessor address bus. Bits 0 to 4 of the address bus
are used to transfer the peripheral number, while bits 5 to 7 specify the command. The peripheral responds to a command when the address on bits 0 to 4 of the bus corresponds to the hardwired address. The commands used with the CRT interface are detailed in Table 1.

TABLE 1 Commands to the CRT interface

mnemonic	command	ADR7	ADR6	ADR5
ADU	preset exchange pointer bits 8 and 9	0	0	0
IEC	input exchange	0	0	1
OCX	output connection	0	1	0
ADL	preset exchange	0	1	1
OEC	pointer bits 0 to 7			
STAT	status exchange	1	0	0
ICX	input connection	1	0	1
DX	disconnection	1	1	0

Fig. 5 Circuit diagram of subsection B, display logic control, of the data exchange logic.

Fig. 6 Circuit diagram of subsection C, data transfer control, of the data exchange logic.

Fig. 7 Hardware operation sequence during data transfer.

Operation sequence

The data exchange must operate in one of three modes: - input: data from character memory to data bus;

- output: data from data bus to character memory;
- space: space code to character memory.

The input and output modes are selected by the relevant connection command (ICX or OCX). The space mode is selected when the SPC bit in the control word is set.

Figure 7 shows the operation sequence in the form of a flow chart. Each data transfer sequence starts with a status request by the microcomputer, followed by ADU and ADL commands to set the exchange pointer, if required. When an OCX or IXC command is received, the control word bits are stored to determine the operation mode.

Space mode $($ SPCFF $=1, \mathrm{INFF}=0)$

The character memory is filled with the code for spaces and the cursor is returned to the top left-hand position.

The space mode is entered after an OCX command is received with the SPC and ECI bits set in the control word. The control logic memorizes the mode by setting flipflops SPCFF $=1$ and $\mathrm{INFF}=0$. The exchange pointer is reset to zero (top left-hand position of screen), and the control state counter (CST1, CST0) is set to 01 while the space code is written into the character memory. The control state counter then changes to 11 and the exchange pointer is incremented. The control counter then changes to 10 and if the exchange pointer is less than 880 , the sequence is repeated. Figure 8 shows the timing of the space mode.
When the exchange pointer reaches 880 , all the character memory contains the space code; the exchange pointer and SPCFF flip-flop are reset. The CALLD flip-flop is then set to indicate that the screen-erase action is complete. The setting of the CALLD flip-flop causes an interrupt, thus requiring the ECI bit to have been set in the control word.

Fig. 8 Timing for the space mode.

Output mode $(\mathbf{S P C F F}=0, I N F F=0)$

Output can be controlled from the main program or from an interrupt routine, as determined by the ECI bit in the control word for the connection command. If the ECI bit is set, the CALLD flip-flop is set, resulting in an interrupt.
When it receives the OEC command, the control logic sets the control state counter to 01 and waits until the line flyback time starts. At this moment, the contents of the 8T31 peripheral register are transferred to the character
memory, see Fig. 9. However, if the ECB bit was set in the control word, the logic does not wait for the flyback time and the character memory is updated immediately. At the next value of the control counter (11) the exchange pointer is incremented. The following control state (10) sets the CALLD flip-flop if more data is to be transferred. The logic then returns to the 00 state, waiting for an OEC or DX command.

Fig. 9 Timing for the output mode.

Input mode $(S P C F F=0, I N F F=1)$

Data input can be controlled by either main or interrupt program, depending upon the ECI in the control word.
An ICX command sets the control counter to 01 and the control logic then waits until the line flyback time before transferring the data byte, addressed by the exchange pointer, to the peripheral register. The exchange pointer
is then incremented and the CALLD flip-flop is set if ECI is active. The control counter is then reset to 00 and the system waits for an IEC command to transfer the data from the peripheral register to the microcomputer. This procedure is repeated until a DX command is received from the microcomputer. The timing for the input mode is shown in Fig. 10.

Fig. 10 Timing for the input mode.

Data exchange software

The software consists of two parts: the connection routine and the data transfer routine. The data transfer routine can be designed either as an interrupt routine or as part of the main program. Listings of the software can be found in the Appendix.

Fig. 11 Flow chart of the connection routine.

Connection routine

The connection is part of the main program: it takes care of the preparations for data transfer. Before connecting the peripheral it issues a status request to check that the peripheral is available and prepares the control word. If the peripheral is available, the appropriate command (ICX or OCX) is issued and the routine continues or branches to the data transfer part of the main program as required by the ECI bit.
A flow chart of the connection routine is shown in Fig. 11. If the status of the display is found to be correct, the routine stores the operand table in the display memory locations DML to DML+7. Table 2 gives details of the operands.

TABLE 2 Operand table for the display

location	number of bytes	operand
DML	1	control word
DML+1	2	number of bytes to be transferred
DML+3	2	address of first byte in computer memory
DML+5	2	address of first byte in character memory
DML+7	1	end character

The use of the four most significant bits of the control word has already been explained in the description of the data exchange logic. The four least significant bits of the control word are not used by the data exchange logic but are used for communication between the software routines. These bits are:
SOER: stop on end character required. If SOER $=1$, the (bit 0) data transfer is halted when the end character specified in the operand table is encountered. If SOER $=0$, the data transfer is halted after the number of bytes specified in the operand table.
I/ $\overline{\mathrm{O}}: \quad \mathrm{I} / \overline{\mathrm{O}}=1$, the display is input device.
(bit 1) $\mathrm{I} / \mathrm{O}=0$, the display is output device.
ECCP: exchange at current cursor position if ECCP $=1$.
(bit 2) If $\mathrm{ECCP}=0$, exchange at screen position determined by the contents of DML +5 and DML+6.
Bit 3 of the control word is unused.
Once the operand table is loaded into the DML locations, a connection command is given (ICX or OCX) and the control word is output on the data bus. Only the four most significant bits are accepted by the data exchange logic. If the ECI bit is set in the control word, the program returns to the first address following the operand table and continues with the main program until an interrupt occurs. If the ECI bit is not set, the program jumps to label EMP in the main program, to perform the data transfer.

Data transfer routines

The data transfer routine can be a part of the main program or it can be a separate interrupt program. If the exchange-by-blocks and screen-erase functions are required, the data transfer must be under interrupt control.

Interrupt program

The flow chart of the interrupt program is shown in Fig. 12.
The first task of the interrupt program is to save the microcomputer status word and the contents of any registers that are used in the interrupt program. After
incrementing the byte counter and checking that there are more bytes to be transferred, an IEC or OEC command is issued. If there are no more bytes to be transferred, a disconnect command (DX) is given and the saved registers restored before returning to the main program. If, in the case of input from the display, the stop-on-end-character-required bit is set, a disconnect command is issued and the character received during the disconnect command is compared with the SOER character. If the characters are not identical, a connection command is issued, and control returns to the main program.

Fig. 12 Flow chart of the interrupt program.

Data transfer by main program

This routine is similar to the interrupt program except for the save and restore operations required by the interrupt software. In this routine, the number of operands (in R3)
must be saved. This is done by reserving R3 for the exclusive use of the data transfer routine. The flow chart of the data transfer routine is shown in Fig. 13.

Fig. 13 Flow chart of the routine to transfer data during the main program.

Appendix

Assembler listings of the software routines for the CRT interface．
Thim hgedeler ver $2 . \operatorname{G}$
Fige buni

LITE RINE UEJET E SOLFCE

0001	
609］	
6004	＊ 6 CGE S Ster
006	
0ube	
6007	
9688	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

4099＊

W016＊UEFINITIONS DF Sheits：
0041 ＊

0420006	K ${ }^{\text {a }}$	E®il	0	FFTESSGAK REGISTERS
6912 50 ch	Fi	EWi	1	
6 CW 44 mer	F2	E迷	2	
W015 bub	ES	EW	5	
00460009	5	EWi	H\％	FSii：SENSE
66^{2}	F	EM	H20	Flifig
W018 W0	II	E可	H20．	INTEREIIFT INHIEIT
004190007	Sp	EW］	$\mathrm{H} \mathrm{Cl}^{\circ}$	Strikfulditer
Weat wor	0	Eni	H0．	Fg：Goniltiun coue
002100	IUS	E．	H20	INTER UIGIT CAREG
04206019	R	E迷	H16	FEgISTER EfNik SELECT
What dow	W	Ebij	H6	1＝WITH，
Whet bew	TiP	Ed	H－64	DVERLL
We 6 bue	0	Em	HC	$1=$ Lug．
Whe vemi	C	Edid	Hil	OAFETNO EGPROW
60ch 060	2	EEi	日	ERGNLH CONE：ZEFO
Whe 06u1	F	Efi	i	FOSITive
0.029	N	EWi	2	hegrtive
609 0000	Ed	Eni	6	Eminit
60 60.01	GT	Emi	1	GREATER THFN
602 000	LT	E $\mathrm{E}^{\text {d }}$	2	LESS THiti
Wes wous	IN	EOU	3	Inconditionit
0.048	H1	E退	\square	FLLL EITS MRE 1
Wes medz	N1	E6	2	WOT HLL EITS AfE 1

065
06 C

049 0． 040
04060
6441 nan
06426020
CRT ELiA 4
STHT EIS

UEC EDI HEO
ICX EDI HCG
CRT USFLAT
STATUS GOHthto
GUTFUT CONHECTION GHARHND
OitFiT Exithine contindo
IWFIT COWECTIOM COHAFNO

USDindection Curtidad

06444060
00450060
6446
0647
06480000
0049650
04040
0651 0．0n
IEC EU
UR EO
HE FRESET GHAR HEH．FOUR L COPHiANWO
HOL ENL HEO
＊
WhRITELES

	樶面
［的	RES
EET	RES
LOC	RES

UISFLHY HEHORLUCNTIOHS KEEFS HOORESS FIRST OFERTHO

LIAE FDDR GETEGT E SURCE

W162 9189 F510	TECI	TML，㛤	Hib	TEST EIT 4 （ECD
616 cls 100		ECTE $\mathrm{Fl}^{\text {a }}$	Luge	ER．If EXCH．EY INTER REO
big4 G130 1F010e		ECTA，	Eiff	ER．TO main Frugrati ExCH．
01656468856	LOEE	EX ${ }^{\text {a }}$	＊RET	RETiden to miln frogrini
G106	＊			
01670143544	OTP	WRTE，Ri	OXX CRT	Connect crt In ouiputhode
016801451872		ECTEIU	TECI	
616	＊			
6110614760065	Con	LOM，R R	［ h ＋5	FETOH Fiod of DISPLFt
W11 W14 E		STRZ	RS	INTO ROTNO F
01129148750		OF	WCOC	
W12 的140		FRL．RG		
0114 614E 昒		RRL Ku		F0， $4 \times$ Enlfrgel
W115 614F 8		FIUS	FS	Fob 5 \％enlifgico
0116 6150 6000		LODIR2	6	
91176152768		FFSL	WC：	FOTATE WITH CFRRY
01180154		FRL，Reg		
0196155		FRL，RE		
01206150 －6		REL：Kn		
612 41570		FRL， EL		
912 日15c 0		RRL FG		
420 6159 42		FRL， R 2		
0124 6154 80060		form KO	Talt	
4250150860		FIELFE	日	
612E U15F 0604		WRTE R2	$\mathrm{H}[\mathrm{H}+\mathrm{CKT}$	
612701610464		WETE RO	$\mathrm{FCL}+\mathrm{CR}$	OUTPUT 2 LUUER EITS OF CHifr moqr
612861681540		ECTR Un	CTW	

PRGE 60014

LINE AOLE DETET E SGRGE

G120 wINTEREIFT ROUTINE FGR CRT
6131 *
0122016530104
613 6168 的明

6125 ब160 60

013761720404
01580174000 Ca
613967700102
61419
0141 617 50.050
0142 G170 F401
6143617592
0144 6181 F4
64456189814
6145
0147 G185 56E4
6148 व187 EEñ解
Q149640 180
0450 6180 61
615164801865

0158.019204
61546154 CEBD
04550197 LEL
0156
015761996
0158019 H 1804
0159 6190 5624
日明 G15 1ET4

GIE GIRE 1 ETG
96
6164 61H4 01
W155 61451819
610e whi Gerse
0167 Whan 0484
9168
Whe 0170 0004
G176 Wiff D6nc
0171 GIE1 604
-172 G1E4 [000
G172 GIE Cungs
017401596004
4175
Q176 GIE SGULE
6177 GIEF 37
6178 W16 54E4
0179 W12 1878
0180
＊
ESTA：IN SFHE SFHE REGISTERS STATUS
LODI，政 1
LOOH FAD Path +2 FETCH EYTECTR L
EIFR FU RST1 INOREHENT：IF ZERO
 EIRR RI RST2 INGEIVENT BUTECTR．H

FSTI STRA，FG DOLL 2 STOFE EYTECTR L

THIPR H TES TEST EIT G（I／O）
EGFRAI OFO BR IF IRT IS OUTFUTOEVICE
THIF KG HEQ TEST EIT I SIEF

＊
REDE RZ OX CRT INPUT BYTE TO RZ DISOONW．

ECTE EU STOM ERGNCH IF EGOFLL
LOOZ Fl FETOH EMTEGTR H
ECTEZ STO P ER IF EYTECTR＝
LGOHED FUHL FETCH CONTR WOFO
WRTE，KO ICX＋CRT CONNECT CRT，WRITE GONTR WORO

ECTR IN INGD
＊
SUEF LOWL R1 FETCH EYTECTR H
ECTE 2 TREI
FELE F IEC CRT
ECTE IN STOH
TREI REDE R2 D $\mathrm{E}+\mathrm{CRT}$ EOTE UN STOH
＊
OFO LOUZ FI FETCH EHTECTR H
EGTRZ TRE2 BR IF EYTECTR＝ 1
LOGM FO＊THLTE FETCH EUTE
WRTE，FO UECHET GUTPHT EHTE
＊
 EIRE FO RTT 4 GF FOR CTR
LOOR．F1［性＋3 EIFE RI FGTS
RGTS STRF，R1 O WL＋

＊
FSTS ESTA，GN REST RESTURE FEGISTERS，STATUS RETE：UN
TRE2 REIE RG DKXGRT［ISGOHECT GRT

BR IF EYTECTE＝
INFUT EHTE
INFUT BYTE DISGOMECT CRT

ECTR UW RGT5
＊

```
LINE fodR UETECT E SOLRCE
G182 *GEROLTINES
```



```
0184 0107770
0185015 15
```



```
487 प10% 17
018
48
0190 प|E क0.Sge
G191 6101 C1
41920102 55
```



```
0194 0104 450
40501067510
0196 610H17
0197
```

SATE STRAT RM LDO FFGL KS SFGL
 RETC: UN
*
*
REST LOMH, RO LOG STRZ Ri LFSi LODH: PGO FIOLFH HO CFS KS RETC UN *

SAVE RO IN LIE. SELECT FEG. Efn极 \#1 (FSL) INTO KQ SHIV (FSL) IN LUC+1 RETURN

FETCH FGL IN KG
(FD) TO KI (RD) TO FGL FETCH GLD YHLIE RÓ FECOHSTR OL INFS SELECT REGG EAHK \# RETURN

699
4206
621 Whe 6.0
Whe 9100 50．0．0
Ger ater 06e
G204 GIE 2 busal
625 GIE5 090

W0 日边 CODR
whe

G21 GiF2 284
W22 $41 F 4$ F402
He13 41F6 813
024
625 G1F8 50E4

Wh WiFD 1815
628 gIFF Wi
ate notu 1812

622 0067 3E2
H2C WOU 1E5
0224
G25 以2e 11
Get ber 1604
WC We 5e 5
W2 wh $1 E 75$
Whe ble Ste 4
W20 12143814
62 日et 1E日
622
पद3 W18 4
624 Wh9 180

D28 WIE［484
Wh Wec SE

629
6246 W25 54E4
0241229 F80


```
*
```

EHF LWIR Fi i

EIFE FURSTG INGREIENT: IF ZERO
LOUN EL [IN +1 FETCH BUTECTR H
EIEREL RGTT IMGEEAENT EYTECTR H

FSTE STRA, FO HLL? STORE EYTECTR L
*
LOEA FÖ OHL FETGH CONTR WGRO
ThI FG HUI TEST EIT (IMO)
EGFEA UFDE ER IF CRT IS GUTFUTDEVICE
ThI Fh He TEST EIT 1 gGef)
EGFRHI SEF ER IF STOF ON NOUE OF EUTES
*

ECTE EO GSE ERGNCH TO CSUE IF EMGL
LOUZ RI FETGH EUTEGTR H
ECTR 2 Gie ER TO GSUE IF ETTECTR =

WFTE FO ICX+GT DONECT CRT, WRITE CONTE WORO
LOC ESTRIN STIN ERANGH TO SIEE STIN
ECTR, IN EMF
*
SEF LOW KI FETOH ETTECTR H
ECTE Z TRES ER IF EHTECTR = 0
REDE RZ IECHT IWFIT ETE
ECTR H LOU
TRES RELE R QU+GRT INFUT ETTE DISOTWNET CRT
CSIE ESTR IN STIN ERGNG TO SIER STIN
ECTEIUT ETN
*
GFOE LOUZ Ki FETCH ETECTR H
EUTR, Z TRE 4 ER IF EUTECTR = 0

WTE FU UECHET GITFUT ETE
ESTR IN LOR EROUH TO SIER ICAD
ECTH IN EMF EFANGH TO START
*
TRE4 REDE WO DX CRT USGONECT GRT
FTN EXA *RET RETUN

0245	wabroutine	
6244	*	
Wa45 W2A CESUS	STIN STEAR R2 * dil $^{\text {a }}$ S	(R2) TO MEP FOINTED EH HOLR CTE
624662060004		duliele lengit ince
0247 DC0 [648	EIRE, F0 RTT	Of FICE CTE
0248 622 bumb		
0249650000	EIRR, RI RGT8	
	RTE STRA, Ri UHL +5	
6251 623 06064		
625802017	FETC. in	
625	*	
025406	ENO H\% ${ }^{\circ}$	

TOTAL FSEABLY ERWOS = DOMA

no.	title	summary
AS50	Serial Input/Output	Using the Sense/Flag capability of the 2650 for serial I/O interfaces.
AS51	Bit \& Byte Testing Procedures	Several methods of testing the contents of the internal registers in the 2650.
AS52	General Delay Routines	Several time delay routines for the 2650 , including formulas for calculating the delay time.
AS52	Binary Arithmetic Routines	Examples for processing binary arithmetic addition, subtraction, multiplication, and division with the 2650 .
AS54	Conversion Routines	- Eight-bit unsigned binary to BCD - Sixteen-bit signed binary to BCD - Signed BCD to binary - Signed BCD to ASCH - ASCII to BCD - Hexadecimal to ASCII - ASCII to Hexadecimal
AS55	Fixed Point Decimal Arithmetic	Methods of performing addition, subtraction, multiplication and division of BCD numbers with the 2650.
SP50	2650 Evaluation Printed Circuit Board (PC1001)	Detailed description of the PC1001, an evaluation and design tool for the 2650.
SP51	2650 Demo System	Detailed description of the Demo System, a hardware base for use with the 2650 CPU prototyping board (PC1001 or PC1500).
SP52	Support Software for use with the NCSS Timesharing System	Step-by-step procedures for generating, editing, assembling, punching, and simulating Signetics 2650 programs using the NCSS timesharing service.
SP53	Simulator, Version 1.2	Features and characteristics of version 1.2 of the 2650 simulator.
SP54	Support Software for use with the General Electric Mark III Timesharing System	Step-by-step procedures for generating, editing, assembling, simulating, and punching Signetics 2650 programs using General Electric's Mark III timesharing system.
SP55	The ABC 1500 Adaptable Board Computer	Describes the components and applications of the ABC 1500 system development card.
SS50	PIPBUG	Detailed description of PIPBUG, a monitor program designed for use with the 2650.
SS51	Absolute Object Format	Describes the absolute object code format for the 2650.
MP51	Initialization	Procedures for initializing the 2650 microprocessor, memory, and I/O devices to their required initial states.
MP52	Low-Cost Clock Generator Circuits	Several clock generator circuits, based on 7400 series TTL, that may be used with the 2650. They include RC, LC and crystal oscillator types.
MP53	Address and Data Bus Interfacing Techniques	Examples of interfacing the 2650 address and data busses with ROMs and RAMs, such as the 2608,2606 and 2602.
MP54	2650 Input/Output Structures and Interfaces	Examines the use of the 2650's versatile set of I/O instructions and the interface between the 2650 and I/O ports. A number of application examples for both serial and parallel I/O are given.
TN 064	Digital cassette interface for a 2650 microprocessor system	Interface hardware and software for the Philips DCR digital cassette drive.
TN 069	2650 Microprocessor keyboard interfaces	Simple interfaces for low-cost keyboard systems.
TN 072	Introducing the Signetics 2651 PCI Terminology and operation modes	Description of the 2651 Programmable Communications Interface IC.
TN 083	Using the Signetics 2651 PCI with popular microprocessors	Simple hardware interfaces to use the 2651 Programmable Communications Interface with various microprocessors.
TN 084	Using seven-segment LED display with the 2650 microprocessor	Interfaces for single and multi-digit LED displays.
TN 085	Cyclic redundancy check by software	A short routine to encode and decode CRC check characters for the 2650.
TN 086	Introducing the Signetics 2655 PPI	Description of the 2655 Programmable Peripheral Interface.
TN 087	Audio cassette recorder interface for the 2650 microprocessor	Economical alternatives to the digital cassette recorder.

Electronic components and materials

for professional, industrial and consumer uses

from the world-wide Philips Group of Companies

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 4270888
Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 5230000.
Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 284-4511.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.
Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV., Tel. (01) 691622.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311.
Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 5121
India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa BIdg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Division, Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. 794-4202.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 533-11-80
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL 5600 PD EINDHOVEN, Tel. (040) 793333
New Zealand: PHILIPS Electrical Ind. Ltd., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867119.
Norway: NORSK A/S PHILIPS, Electronica Dept., Vitaminveien 11, Grefsen, OSLO 4, Tel. (02) 150590.
Peru: CADESA, Rocca de Vergallo 247, LIMA 17, Tel. 628599
Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, TeI. 86-89-51 to 59.
Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 683121
Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., P.O.B. 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 538811.
South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001. Tel. 24/6701.
Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: A.B. ELCOMA, Lidingövägen 50, S-10 250 STOCKHOLM 27. Tel. 08/6797 80.
Switzerland: PHILIPS A. G., Elcoma Dept., Edenstrasse 20, CH-8027 ZÜRICH, Tel. 01/44 2211
Taiwan: PHILIPS TAIWAN LTD., 3rd FI.. San Min Building, 57-1. Chung Shan N. Rd. Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5
Turkey: TURK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD , Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Active devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000. (Passive devices) MEPCO /ELECTRA INC., Columbia Rd., MORRISTOWN, N. J. 07960, Tel. (201) 539-2000 (IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.
Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 94321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, CARACAS, Tel. 360511
© 1978 N.V. Philips' Gloeilampenfabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way in whole or in part, without the written consent of the publisher

