WATER COOLED INDUSTRIAL R.F. POWER TRIODE WITH INTEGRAL HELICAL COOLER

QUICK REFERENCE DATA					
Industrial R.F. oscillator class C					
Freq.	Three phase				
(MHz)	V _a (kV)	W _p ¹) (kW)			
50	7.2 6.2	6.1 5.0			

HEATING: direct; filament thoriated tungsten

Filament voltage
$$V_{f} = 12.6 \quad V \quad {+5 \, \%} \\ -10 \, \%$$
 Filament current
$$I_{f} = 33 \quad A$$

CAPACITANCES

Anode to all other elements except grid	c_a	=	1.0	pF	
Grid to all other elements except anode	$C_{\mathbf{g}}$	=	14.2	pF	
Anode to grid	C_{ag}	=	7.9	pF	

TYPICAL CHARACTERISTICS

Anode voltage	$V_{\mathbf{a}}$	=	6	kV
Anode current	I_a	=	1	A
Mutual conductance	S	=	12	mA/V
Amplification factor	11	=	24	

 $^{^{\}mathrm{l}}$) Useful power in the load

TBH7/9000

TEMPERATURE LIMITS (Absolute limits)

Water inlet temperature

 $t_i = max.$ 50 °C

Temperature of the seals

= max. 220 °C

WATER COOLING CHARACTERISTICS

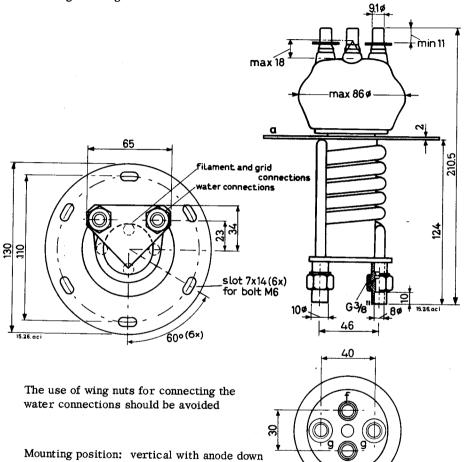
W _a	t _i	q _{min}	p _i	t _o
(kW)	(°C)	(l/min)	(atm)	(°C)
2	20	1	0.032	56
	50	2	0.084	68
4	20	2.2	0.10	49
	50	4.4	0.49	65
6	20	4	0.41	43
	50	8	1.4	62

At water inlet temperatures between 20 and 50 $^{\rm o}{\rm C}$ the required quantity of water can be found by linear interpolation.

At frequencies above 4 MHz a low velocity air flow should be directed to the seals.

At frequencies above 4 MHz both grid terminals should be connected in parallel and care should be taken to distribute the R.F. current equally over both grid terminals to avoid excessive temperatures.

➤ ACCESSORIES


Filament and grid connectors (4 required)

type 40634

MECHANICAL DATA

Dimensions in mm

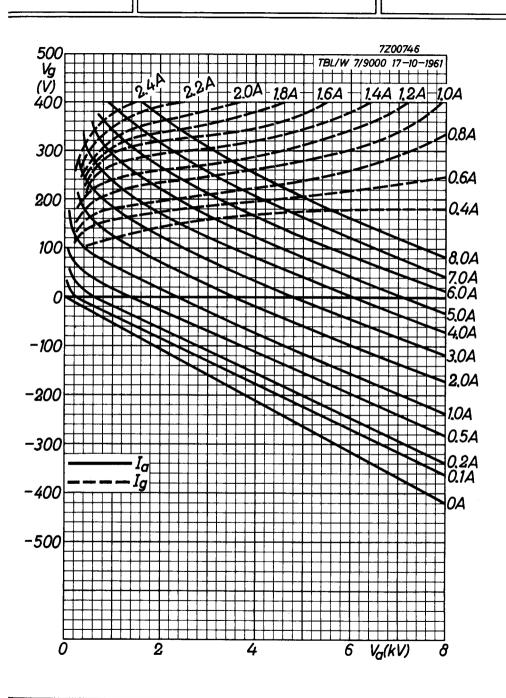
Net weight 1 kg

 $R.F.\ CLASS\ C$ OSCILLATOR FOR INDUSTRIAL USE with anode voltage from three-phase rectifier without filter

LIMITING VALUES (Absolute limits), continuous service

Frequency	f		up to	50	MHz				
Anode voltage	Va	=	max.	8	kV				
Anode input power	$W_{\mathbf{i}}$	a =	max.	12	kW				
Anode dissipation	Wa	ı =	max.	6	kW				
Anode current	I_a	=	max.	1.8	A				
Negative grid voltage	-V _g	. =	max.	1250	V				
Grid current, loaded	I_g	=	max.	0.4	A				
Grid current, unloaded	I_g	=	max.	0.5	A				
Grid circuit resistance	R_g	=	max.	10	$\mathbf{k}\Omega$				
OPERATING CHARACTERISTICS, continuous service									
Frequency	f	=	50	50	MHz				
Anode voltage	v_a	= '	7200	6200	V				
Anode current, loaded	I_a	=	1.5	1.4	A				
Anode current, unloaded	I_a	=	0.37	0.40	A				
Grid current, loaded	I_g	=	0.36	0.37	A				
Grid current, unloaded	I_g	=	0.47	0.47	A				
Grid resistor	$R_{\mathbf{g}}$	=	1850	1500	Ω				
Load resistance	$R_{a_{\sim}}$	=	2300	2100	Ω				
Feedback ratio under loaded conditions	$V_{g_{\sim}}/V_{a_{\sim}}$	=	17	17	%				
Anode input power	w_{ia}	=	10.8	8.68	kW				
Anode dissipation	w_a	=	3.3	2.5	kW				

70


6.1

71 % 5.0 kW ¹)

Efficiency

Output power in the load

 $^{^{1}}$) Useful power in the load, measured in a circuit having an efficiency of 85 % 722 3540

June 1965