GENERAL
The 30PI2 has been designed for use in the output stage of Audio Amplifiers or Frame Time Bases, and is suitable for AC or ACIDC operation.

RATING

Heater Current (amps)	In	0.3
Heater Voltage (volts)	V_{h}	12.6
Maximum Anode Voltage (volts)	$V_{\text {(}}^{\text {max }}$)	250
Maximum Screen Volcage (volts)	$V_{\mathrm{g} \text { (}}($ max $)$	250
Maximum Anode Dissipation (watts)	$P_{\text {a }}(\max)$	6.0
Maximum Screen Dissipation (continuous) (watts)	$\mathrm{P}_{\mathrm{g} \text { (}(\text { max })}$	1.8
Maximum Screen Dissipation (Speech and Music)(watts)	$\mathrm{P}_{\mathrm{g} \text { (}}$ max)	$2 \cdot 7$
Maximum Cathode Current (mA)	$l_{k}($ max $)$	50
Maximum Heater to Cathode		
Voltage (volts) (r.m.s.)	$V_{h-k}(\max)$	150*
Mutual Conductance (mA/V)	8 m	8.3†

[^0]
DIMENSIONS

Maximum Overall Length (mm)	78.5
Maximum Diameter (mm)	22.2
Maximum Seated Height (mm)	$71 \cdot 5$
Approximate Nett Weight (ozs)	$\frac{1}{2}$
Approximate Packed Weight (ozs)	$1 \frac{1}{4}$

TYPICAL OPERATION-Class A Audio Ourput

Anode Supply Voltage (voles)	$V_{4}(\mathrm{~b})$	170
Screen Supply Voltage (volts)	$V_{88}(b)$	180
Grid Bias Voltage (vols)	v_{81}	-10.3
Anode Current (quiescent) (mA)	$\mathrm{t}_{\mathrm{a}}(\mathrm{o})$	31
Screen Current (quiescent) (mA)	$l_{81}(0)$	7.3
Anode Load (ohms)	$\mathrm{Ra}_{\mathbf{a}}$	5.000+
Power Output (watts)	Pout	$2 \cdot 25$
input Swing (volts) (r.m.s.)	$V_{\text {in }}$ r	

The above operating conditions were caken with fixed $D C$. potentials.
The grid to cathode circuit resistance must not exceed 0.5 megohms with cathode self-bias.
\ddagger For 5% Third Harmonic and Second Harmonic not exceeding 5%

TYPICAL OPERATION Frame Time-Base
The frame output stage should be designed to allow for valve spread and deterioration during life in addition tis component variation. Values of total tetrode peak-anode current available for a new average valve and at the assumed end of life point on any valye are as follows :

	V_{a}	$V_{g z}$	$V_{g 1}$	$I_{a}(m A)$
Average New Valve Assumed End of Life Condition	50	180	$-i$	110
	50	180	-1	72

TDS. No. 2 NOPT2-

[^0]: -f Measured with respect to the higher potential heater pin. \& *Taken at $V_{a}=170 \mathrm{v} ; \mathrm{V}_{\mathrm{g}_{\mathrm{g}}}=180 ; \mathrm{V}_{\mathrm{g}_{1}}=-9.4 \mathrm{v} ; \mathrm{I}_{\mathrm{a}}-35 \mathrm{~mA}$

