AMPEREX TUBE TYPE 6508

The 6508 is a two electrode mercury-vapor rectifier tube and is designed for rectifier application of relatively high voltage and current. The cathode is directly heated, oxide coated. The physical design of this tube is similar to the popular AMPEREX types 5869 and 5870 thyratrons. The top bakelite cup is intended to prevent mercury condensation on the anode and thus eliminates arc-back.

Maximum Ratings, Absolute Values

Peak inverse Voltage (max.)	21,000	15,000	0,000 volts		
Condensed Mercury	•				
Temperature Limits +	25 to +45	+ 25 to +	-50 +25 to +60 ⁰ C		
Maximum plate current					
Peak	10 amps				
Average (Averaging time max. 30 sec)	sec) 2.5 amps				
Surge, for design only	100 amps				
(Maximum duration 0.1 second)					
Frequency Range	25 - 150 cps				
Electrical Data	Min.	Bogey	Max.		
Filament Voltage	4.75	5.0	5,25 volts		
Filament Current at 5.0 volts		12.5	13.7 amps		
Filament Heating Time (Note 3)			-· • •		
(before applying place voltage)	90		seconds		
Tube Voltage Drop (Output current = 2.5 a	umps)	12	volts		

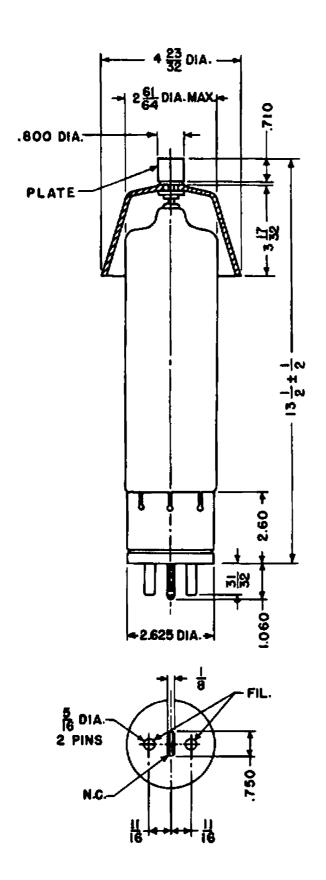
Operating conditions for 21,KV, Peak Inverse Voltage

Circuit	Input Voltage rms value kv	DC Output voltage to filter kv	DC Output current amp
Single-phase full-wave 2 tubes	7.4	6.7	5
Three-phase half-wave- 3 tubes	8.6	10	7.5
Three-phase, double Y 6 tubes parallel	8.6	10	15
Four-phase half-wave 4 tubes	7.4	9.5	10
Single-phase full-wave 4 tubes	14.8	13.4	5
Three-phase full-wave 6 tubes	14.8	20	7.5
Four-phase full-wave 8 tubes	14.8	19	10

Mechanical Data

Type of cooling

Equilibrium Condensed-Mercury Temperature Rise
At Full Load, approximate
At No Load, approximate


Mounting position

Vertical with base down
Net weight (approximate)

25 ounces

NOTES:

- 1. In order to obtain maximum life it is recommended that a filament voltage phase shift of $90^{\circ}\pm30^{\circ}$ with respect to plate voltage be applied.
- 2. The tube should always be used with the bakelite cap attached.
- The minimum heating time refers only to the filament. Sufficient additional time
 must be allowed to permit the condensed mercury temperature to rise to the
 minimum condensed mercury temperature limit and to permit all the mercury to
 condense on the lower part of the bulb.
- The metallic shell of the base should not be allowed to reach a potential different from the cathode potential.

